scholarly journals Humic + Fulvic acid mitigated Cd adverse effects on plant growth, physiology and biochemical properties of garden cress

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ertan Yildirim ◽  
Melek Ekinci ◽  
Metin Turan ◽  
Güleray Ağar ◽  
Atilla Dursun ◽  
...  

AbstractCadmium (Cd) is a toxic and very mobile heavy metal that can be adsorbed and uptaken by plants in large quantities without any visible sign. Therefore, stabilization of Cd before uptake is crucial to the conservation of biodiversity and food safety. Owing to the high number of carboxyl and phenolic hydroxyl groups in their structure, humic substances form strong bonds with heavy metals which makes them perfect stabilizing agents. The aim of this study was to determine the effects of humic and fulvic acid (HA + FA) levels (0, 3500, 5250, and 7000 mg/L) on alleviation of Cadmium (Cd) toxicity in garden cress (Lepidium sativum) contaminated with Cd (CdSO4.8H2O) (0, 100, and 200 Cd mg/kg) under greenhouse conditions. Our results showed that, Cd stress had a negative effect on the growth of garden cress, decreased leaf fresh, leaf dry, root fresh and root dry weights, leaf relative water content (LRWC), and mineral content except for Cd, and increased the membrane permeability (MP) and enzyme (CAT, SOD and POD) activity. However, the HA + FA applications decreased the adverse effects of the Cd pollution. At 200 mg/kg Cd pollution, HA + FA application at a concentration of 7000 mg/L increased the leaf fresh, leaf dry, root fresh, root dry weights, stem diameter, leaf area, chlorophyll reading value (CRV), MP, and LRWC values by 262%, 137%, 550%,133%, 92%, 104%, 34%, 537%, and 32% respectively, compared to the control. Although the highest H2O2, MDA, proline and sucrose values were obtained at 200 mg/L Cd pollution, HA + FA application at a concentration of 7000 mg/L successfully alleviated the deleterious effects of Cd stress by decreasing H2O2, MDA, proline, and sucrose values by 66%, 68%, 70%, and 56%, respectively at 200 mg/kg Cd pollution level. HA + FA application at a concentration of 7000 mg/L successfully mitigated the negative impacts of Cd pollution by enhanced N, P, K, Ca, Mg, Fe, Mn, Cu, Mn, Zn, and B by 75%, 23%, 84%, 87%, 40%, 85%, 143%, 1%, 65%, and 115%, respectively. In addition, HA + FA application at a concentration of 7000 mg/L successfully reduced Cd uptake by 95% and Cl uptake by 80%. Considering the plant growth parameters, the best results were determined when HA + FA concentration was 7000 mg/L. We have shown that, it is critical to apply a humic substance with high percentage of FA, which was 10% in this study, to mitigate the adverse effects of heavy metal stress on plant growth. In conclusion, the application of HA + FA may be suggested as an effective solution for reducing the Cd uptake of the plants by stabilizing Cd in soil and preventing translocation of Cd from the roots of plant to its shoot and leaves.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ertan Yildirim ◽  
Melek Ekinci ◽  
Metin Turan ◽  
Güleray Ağar ◽  
Atilla Dursun ◽  
...  

2018 ◽  
Vol 19 (8) ◽  
pp. 2163 ◽  
Author(s):  
Marwa Ismael ◽  
Ali Elyamine ◽  
Yuan Zhao ◽  
Mohamed Moussa ◽  
Muhammad Rana ◽  
...  

Cadmium (Cd) is highly toxic, even at very low concentrations, to both animals and plants. Pollen is extremely sensitive to heavy metal pollutants; however, less attention has been paid to the protection of this vital part under heavy metal stress. A pot experiment was designed to investigate the effect of foliar application of Se (1 mg/L) and Mo (0.3 mg/L) either alone or in combination on their absorption, translocation, and their impact on Cd uptake and its further distribution in Brassica napus, as well as the impact of these fertilizers on the pollen grains morphology, viability, and germination rate in B. napus under Cd stress. Foliar application of either Se or Mo could counteract Cd toxicity and increase the plant biomass, while combined application of Se and Mo solutions on B. napus has no significant promotional effect on plant root and stem, but reduces the seeds’ weight by 10–11%. Se and Mo have decreased the accumulated Cd in seeds by 6.8% and 9.7%, respectively. Microscopic studies, SEM, and pollen viability tests demonstrated that pollen grains could be negatively affected by Cd, thus disturbing the plant fertility. Se and Mo foliar application could reduce the toxic symptoms in pollen grains when the one or the other was sprayed alone on plants. In an in vitro pollen germination test, 500 μM Cd stress could strongly inhibit the pollen germination rate to less than 2.5%, however, when Se (10 μM) or Mo (1.0 μM) was added to the germination medium, the rate increased, reaching 66.2% and 39.4%, respectively. At the molecular level, Se and Mo could greatly affect the expression levels of some genes related to Cd uptake by roots (IRT1), Cd transport (HMA2 and HMA4), Cd sequestration in plant vacuoles (HMA3), and the final Cd distribution in plant tissue at the physiological level (PCS1).


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1575
Author(s):  
Muhammad Jawad Hassan ◽  
Muhammad Ali Raza ◽  
Sana Ur Rehman ◽  
Muhammad Ansar ◽  
Harun Gitari ◽  
...  

Heavy metal stress is a leading environmental issue reducing crop growth and productivity, particularly in arid and semi-arid agro-ecological zones. Cadmium (Cd), a non-redox heavy metal, can indirectly increase the production of reactive oxygen species (ROS), inducing cell death. A pot experiment was conducted to investigate the effects of different concentrations of Cd (0, 5, 25, 50, 100 µM) on physiological and biochemical parameters in two sorghum (Sorghum bicolor L.) cultivars: JS-2002 and Chakwal Sorghum. The results showed that various concentrations of Cd significantly increased the Cd uptake in both cultivars; however, the uptake was higher in JS-2002 compared to Chakwal Sorghum in leaf, stem and root. Regardless of the cultivars, there was a higher accumulation of the Cd in roots than in shoots. The Cd stress significantly reduced the growth and increased the electrolyte leakage (EL), hydrogen peroxide (H2O2) concentration and malondialdehyde (MDA) content in both cultivars, but the Chakwal Sorghum showed more pronounced oxidative damage than the JS-2002, as reflected by higher H2O2, MDA and EL. Moreover, Cd stress, particularly 50 µM and 100 µM, decreased the activity of different antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). However, the JS-2002 exhibited higher SOD, POD and CAT activities than the Chakwal Sorghum under different Cd-levels. These findings revealed that JS-2002 had a stronger Cd enrichment capacity and also exhibited a better tolerance to Cd stress due to its efficient antioxidant defense system than Chakwal Sorghum. The present study provides the available information about Cd enrichment and tolerance in S. bicolor, which is used as an important agricultural crop for livestock feed in arid and semi-arid regions.


Author(s):  
Mohammad Kazem Souri ◽  
Mansoure Hatamian ◽  
Tsehaye Tesfamariam

Abstract Background Contamination of vegetable crops with heavy metals is a great threat to human health. On the other hand, monitoring plant tissue content of heavy metals at different growth stages could have important implications. In this study, shoot and root samples of garden cress and sweet basil were collected from five farms, from heavy metal polluted fields located in Shahre Rey, south of Tehran, Iran, in either young (3 weeks old) or mature (7 weeks old) plants. The concentrations of cadmium (Cd), lead (Pb), nickel (Ni), arsenic (As), chromium (Cr), cobalt (Co), copper (Cu), manganese (Mn) and zinc (Zn) in plant tissues were determined using atomic absorption spectroscopy. In another study, 2 weeks (young) or 6 weeks old (mature) plants of garden cress were subjected to three concentrations of Cd and Pb (0, 5, 10 mg L−1) under hydroponic sand culture for 5 days, in which Hoagland formula was used for nutrient solution preparation. Results The results showed that root concentration of various heavy metals, particularly Cd, As, Ni, Co, Cu, Mn and Zn but not Pb were significantly higher than their shoot concentration in either crop under field sampling. The leaf concentration of some heavy metals was significantly different in seedling and older (mature) plant samples of either crop. Young plant leaves of sweet basil had significantly less Cd, Pb, As and higher Cu than mature plants, whereas young garden cress plants had similar Cd, Pb and higher As and Zn concentrations than mature plants. The Cr, Co, Mn and Zn concentrations were similar in young and mature plants of sweet basil. The Mn, Co, Cr and Ni concentration of young and mature plants of either crop was also similar. The result of hydroponic study showed that young plants of garden cress had higher potential to accumulate lead in shoot and root, particularly in lower (5 mg L−1) than higher (10 mg L−1) lead concentration; however, root Pb concentration at 10 mg L−1 Pb of nutrient solution showed no difference between young and mature plants. Regarding cadmium, young garden cress plants accumulated higher Cd than mature plants in their shoot, particularly under higher Cd levels (10 rather than 5 mg L−1) of nutrient solution; however, a wide difference in root Cd concentration was observed under low (5 mg L−1) than higher (10 mg L−1) cadmium concentration of nutrient solution. Conclusion The results of these two studies indicate that despite that young plants have a higher potential for heavy metal uptake and accumulation, the low difference in young and mature plants in the polluted fields may be due to the longer period of plant growth of mature plants that may increase the risk of exposure to polluted air and dust deposition containing high levels of heavy metals.


Toxics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 182
Author(s):  
Ruchi Bansal ◽  
Swati Priya ◽  
Harsh Kumar Dikshit ◽  
Sherry Rachel Jacob ◽  
Mahesh Rao ◽  
...  

Cadmium (Cd) is a hazardous heavy metal, toxic to our ecosystem even at low concentrations. Cd stress negatively affects plant growth and development by triggering oxidative stress. Limited information is available on the role of iron (Fe) in ameliorating Cd stress tolerance in legumes. This study assessed the effect of Cd stress in two lentil (Lens culinaris Medik.) varieties differing in seed Fe concentration (L4717 (Fe-biofortified) and JL3) under controlled conditions. Six biochemical traits, five growth parameters, and Cd uptake were recorded at the seedling stage (21 days after sowing) in the studied genotypes grown under controlled conditions at two levels (100 μM and 200 μM) of cadmium chloride (CdCl2). The studied traits revealed significant genotype, treatment, and genotype × treatment interactions. Cd-induced oxidative damage led to the accumulation of hydrogen peroxide (H2O2) and malondialdehyde in both genotypes. JL3 accumulated 77.1% more H2O2 and 75% more lipid peroxidation products than L4717 at the high Cd level. Antioxidant enzyme activities increased in response to Cd stress, with significant genotype, treatment, and genotype × treatment interactions (p < 0.01). L4717 had remarkably higher catalase (40.5%), peroxidase (43.9%), superoxide dismutase (31.7%), and glutathione reductase (47.3%) activities than JL3 under high Cd conditions. In addition, L4717 sustained better growth in terms of fresh weight and dry weight than JL3 under stress. JL3 exhibited high Cd uptake (14.87 mg g−1 fresh weight) compared to L4717 (7.32 mg g−1 fresh weight). The study concluded that the Fe-biofortified lentil genotype L4717 exhibited Cd tolerance by inciting an efficient antioxidative response to Cd toxicity. Further studies are required to elucidate the possibility of seed Fe content as a surrogacy trait for Cd tolerance.


2021 ◽  
Vol 11 (9) ◽  
pp. 4160
Author(s):  
Farheen Nazli ◽  
Xiukang Wang ◽  
Maqshoof Ahmad ◽  
Azhar Hussain ◽  
Bushra ◽  
...  

Untreated wastewater used for irrigating crops is the major source of toxic heavy metals and other pollutants in soils. These heavy metals affect plant growth and deteriorate the quality of edible parts of growing plants. Phytohormone (IAA) and exopolysaccharides (EPS) producing plant growth-promoting rhizobacteria can reduce the toxicity of metals by stabilizing them in soil. The present experiment was conducted to evaluate the IAA and EPS-producing rhizobacterial strains for improving growth, physiology, and antioxidant activity of Brassica juncea (L.) under Cd-stress. Results showed that Cd-stress significantly decreased the growth and physiological parameters of mustard plants. Inoculation with Cd-tolerant, IAA and EPS-producing rhizobacterial strains, however, significantly retrieved the inhibitory effects of Cd-stress on mustard growth, and physiology by up regulating antioxidant enzyme activities. Higher Cd accumulation and proline content was observed in the roots and shoot tissues upon Cd-stress in mustard plants while reduced proline and Cd accumulation was recorded upon rhizobacterial strains inoculation. Maximum decrease in proline contents (12.4%) and Cd concentration in root (26.9%) and shoot (29%) in comparison to control plants was observed due to inoculation with Bacillus safensis strain FN13. The activity of antioxidant enzymes was increased due to Cd-stress; however, the inoculation with Cd-tolerant, IAA-producing rhizobacterial strains showed a non-significant impact in the case of the activity of superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) in Brassica juncea (L.) plants under Cd-stress. Overall, Bacillus safensis strain FN13 was the most effective strain in improving the Brassica juncea (L.) growth and physiology under Cd-stress. It can be concluded, as the strain FN13 is a potential phytostabilizing biofertilizer for heavy metal contaminated soils, that it can be recommended to induce Cd-stress tolerance in crop plants.


Sign in / Sign up

Export Citation Format

Share Document