scholarly journals High-isolation antenna array using SIW and realized with a graphene layer for sub-terahertz wireless applications

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Shahram Salekzamankhani ◽  
Sonia Aïssa ◽  
Chan H. See ◽  
...  

AbstractThis paper presents the results of a study on developing an effective technique to increase the performance characteristics of antenna arrays for sub-THz integrated circuit applications. This is essential to compensate the limited power available from sub-THz sources. Although conventional array structures can provide a solution to enhance the radiation-gain performance however in the case of small-sized array structures the radiation properties can be adversely affected by mutual coupling that exists between the radiating elements. It is demonstrated here the effectiveness of using SIW technology to suppress surface wave propagations and near field mutual coupling effects. Prototype of 2 × 3 antenna arrays were designed and constructed on a polyimide dielectric substrate with thickness of 125 μm for operation across 0.19–0.20 THz. The dimensions of the array were 20 × 13.5 × 0.125 mm3. Metallization of the antenna was coated with 500 nm layer of Graphene. With the proposed technique the isolation between the radiating elements was improved on average by 22.5 dB compared to a reference array antenna with no SIW isolation. The performance of the array was enhanced by transforming the patch to exhibit metamaterial characteristics. This was achieved by embedding the patch antennas in the array with sub-wavelength slots. Compared to the reference array the metamaterial inspired structure exhibits improvement in isolation, radiation gain and efficiency on average by 28 dB, 6.3 dBi, and 34%, respectively. These results show the viability of proposed approach in developing antenna arrays for application in sub-THz integrated circuits.

Author(s):  
K. Prahlada Rao ◽  
R. M. Vani ◽  
P. V. Hunagund

This article demonstrates the alleviation of mutual coupling of a simple and low-cost four-element microstrip array antenna by loading I-shaped slot-type electromagnetic band gap structure in the ground plane. FR-4 glass epoxy is used as dielectric substrate. Moreover, the proposed array antenna shows a better performance in terms of multi-band resonance. The antenna is resonating at four frequencies and a virtual size reduction of 78.48% is obtained. The designed array antenna possesses directional radiation properties. Mentor Graphics IE3D software is used to design and simulate the designed antennas and the measured results are obtained using vector network analyser.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Massimiliano Comisso ◽  
Giulia Buttazzoni ◽  
Roberto Vescovo

This paper proposes a deterministic method for the 3D synthesis of antenna arrays that jointly accounts for far-field pattern reconfigurability, polarization setting, dynamic range ratio reduction, and near-field control. The conceived algorithm, which generalizes some existing solutions, relies on a weighted cost function, whose iterative minimization is accomplished by properly derived closed-form expressions. This feature, combined with the possibility of selecting the weighting parameters, provides a fast and versatile approach, whose capabilities are numerically checked by considering different synthesis problems and array structures in the presence of mutual coupling.


2020 ◽  
Vol 5 (2) ◽  
pp. 78-89
Author(s):  
Prahlada Rao ◽  
VANI R M ◽  
P V Hunagund

The paper presents the improvement in the performance of eight element microstrip antenna array. The overall bandwidth of the proposed microstrip antenna array is equal to 85.74 % as compared to 4.98 % of the conventional antenna array. The proposed microstrip antenna array is producing good reduction in mutual coupling values at the resonant frequency of 5.53 GHz. Moreover, the radiation properties of conventional antenna array are improved with good reduction in power radiated in the undesired direction. The proposed microstrip antenna array is producing a healthy size reduction of 47.19 %. FR-4 glass epoxy substrate is used as dielectric substrate which has a dielectric constant of 4.2 and loss tangent of 0.0245. The microstrip antenna arrays are designed using Mentor Graphics IE3D software.


Author(s):  
Hamil Shah ◽  
Abdullahi Inshaar ◽  
Chengzhe Zou ◽  
Shreyas Chaudhari ◽  
Saad Alharbi ◽  
...  

Physical deformation mechanisms are emerging as compelling and simple ways to adapt radio frequency (RF) characteristics of antennas in contrast to digital steering approaches acting on topologically fixed antennas. Concepts of physical reconfigurability also enable exceptional capabilities such as deployable and morphing antenna arrays that serve multiple functions and permit compact transport with ease. Yet, the emergent concepts lack broad understanding of effective approaches to integrate conformal, electrically conductive architectures with high-compliance foldable frameworks. To explore this essential interface where electrical demands and mechanical requirements may conflict, this research introduces a new class of origami-based tessellated antennas whose RF characteristics are self-tuned by physical reconfiguration of the antenna shape. E-textile materials are used to permit large antenna shape change while maintaining electrical conductivity. Dipole and patch antennas are considered as conventional antenna platforms upon which to innovate with the e-textile origami concept. Multiphysics modeling efforts establish the efficacy of foldable antenna geometries for broad tailoring of the RF characteristics. Experiments with proof-of-concept antennas confirm the large adaptability of wave radiation properties enabled by the reconfiguration of the e-textile origami surfaces. The results suggest that e-textile antennas can be integrated into clothing and mechanical structures, providing a non-invasive way of quantifying deformation for a wide range of applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Oluwole John Famoriji ◽  
Thokozani Shongwe

To obtain an antenna array with isotropic radiation, spherical antenna array (SAA) is the right array configuration. The challenges of locating signals transmitted within the proximity of antenna array have been investigated considerably in the literature. However, near-field (NF) source localization of signals has hitherto not been investigated effectively using SAA in the presence of mutual coupling (MC). MC is another critical problem in antenna arrays. This paper presents an NF range and direction-of-arrival (DoA) estimation technique via the direction-independent and signal invariant spherical harmonics (SH) characteristics in the presence of mutual coupling. The energy of electromagnetic (EM) signal on the surface of SAA is captured successfully using a proposed pressure interpolation approach. The DoA estimation within the NF region is then calculated via the distribution of pressure. The direction-independent and signal invariant characteristics, which are SH features, are obtained using the DoA estimates in the NF region. We equally proposed a learning scheme that uses the source activity detection and convolutional neural network (CNN) to estimate the range of the NF source via the direction-independent and signal invariant features. Considering the MC problem and using the DoA estimates, an accurate spectrum peak in the multipath situation in conjunction with MC and a sharper spectrum peak from a unique MC structure and smoothing algorithms are obtained. For ground truth performance evaluation of the SH features within the context of NF localization, a numerical experiment is conducted and measured data were used for analysis to incorporate the MC and consequently computed the root mean square error (RMSE) of the source range and NF DoA estimate. The results obtained from numerical experiments and measured data indicate the validity and effectiveness of the proposed approach. In addition, these results are motivating enough for the deployment of the proposed method in practical applications.


2020 ◽  
Vol 10 (3) ◽  
pp. 748
Author(s):  
Dipesh Kapoor ◽  
Cher Ming Tan ◽  
Vivek Sangwan

Advancements in the functionalities and operating frequencies of integrated circuits (IC) have led to the necessity of measuring their electromagnetic Interference (EMI). Three-dimensional integrated circuit (3D-IC) represents the current advancements for multi-functionalities, high speed, high performance, and low-power IC technology. While the thermal challenges of 3D-IC have been studied extensively, the influence of EMI among the stacked dies has not been investigated. With the decreasing spacing between the stacked dies, this EMI can become more severe. This work demonstrates the potential of EMI within a 3D-IC numerically, and determines the minimum distance between stack dies to reduce the impact of EMI from one another before they are fabricated. The limitations of using near field measurement for the EMI study in stacked dies 3D-IC are also illustrated.


2011 ◽  
Vol 3 (3) ◽  
pp. 273-280
Author(s):  
Alexander Stark ◽  
Benjamin Rohrdantz ◽  
Ulf Johannsen ◽  
Arne F. Jacob

A novel calibration network for patch antennas is proposed. We introduce magnetically coupled in-situ probes, which excite the fundamental patch mode. In that way, finite array effects and mutual coupling are taken into account, providing the opportunity for accurate online calibration of active antenna terminals. The specific advantages of the approach are demonstrated for linearly polarized patch antennas. Realization aspects of the multilayer antenna are discussed and the effect of some fabrication imperfections are investigated. Measured S-parameters as well as radiation simulation results of a single patch with the integrated probes are presented. Based on simulation of antenna arrays with in-situ probes the calibration accuracy is given in theory.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
E. Saenz ◽  
K. Guven ◽  
E. Ozbay ◽  
I. Ederra ◽  
R. Gonzalo

The mutual coupling between elements of a multifrequency dipole antenna array is experimentally investigated byS-parameter measurements and planar near-field scanning of the radiated field. A multifrequency array with six dipoles is analyzed. In order to reduce the coupling between dipoles, a planar metasurface is placed atop the array acting as superstrate. The mutual coupling of the antenna elements in the absence and presence of the superstrate is presented comparatively. Between 3 and 20 dB mutual coupling reduction is achieved when the superstrate is used. By scanning the field radiated by the antennas and far-field measurements of the radiation pattern, it is observed that the superstrate confines the radiated power, increases the boresight radiation, and reduces the endfire radiation.


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 492
Author(s):  
Amlan kusum Mukherjee ◽  
Mingjun Xiang ◽  
Sascha Preu

Present-day photonic terahertz (100 GHz–10 THz) systems offer dynamic ranges beyond 100 dB and frequency coverage beyond 4 THz. They yet predominantly employ free-space Terahertz propagation, lacking integration depth and miniaturisation capabilities without sacrificing their extreme frequency coverage. In this work, we present a high resistivity silicon-on-insulator-based multimodal waveguide topology including active components (e.g., THz receivers) as well as passive components (couplers/splitters, bends, resonators) investigated over a frequency range of 0.5–1.6 THz. The waveguides have a single mode bandwidth between 0.5–0.75 THz; however, above 1 THz, these waveguides can be operated in the overmoded regime offering lower loss than commonly implemented hollow metal waveguides, operated in the fundamental mode. Supported by quartz and polyethylene substrates, the platform for Terahertz photonic integrated circuits (Tera-PICs) is mechanically stable and easily integrable. Additionally, we demonstrate several key components for Tera-PICs: low loss bends with radii ∼2 mm, a Vivaldi antenna-based efficient near-field coupling to active devices, a 3-dB splitter and a filter based on a whispering gallery mode resonator.


Sign in / Sign up

Export Citation Format

Share Document