scholarly journals IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wida Razawy ◽  
Celso H. Alves ◽  
Marijke Koedam ◽  
Patrick S. Asmawidjaja ◽  
Adriana M. C. Mus ◽  
...  

AbstractThe IL-23 receptor (IL-23R) signaling pathway has pleiotropic effects on the differentiation of osteoclasts and osteoblasts, since it can inhibit or stimulate these processes via different pathways. However, the potential role of this pathway in the regulation of bone homeostasis remains elusive. Therefore, we studied the role of IL-23R signaling in physiological bone remodeling using IL-23R deficient mice. Using µCT, we demonstrate that 7-week-old IL-23R−/− mice have similar bone mass as age matched littermate control mice. In contrast, 12-week-old IL-23R−/− mice have significantly lower trabecular and cortical bone mass, shorter femurs and more fragile bones. At the age of 26 weeks, there were no differences in trabecular bone mass and femur length, but most of cortical bone mass parameters remain significantly lower in IL-23R−/− mice. In vitro osteoclast differentiation and resorption capacity of 7- and 12-week-old IL-23R−/− mice are similar to WT. However, serum levels of the bone formation marker, PINP, are significantly lower in 12-week-old IL-23R−/− mice, but similar to WT at 7 and 26 weeks. Interestingly, Il23r gene expression was not detected in in vitro cultured osteoblasts, suggesting an indirect effect of IL-23R. In conclusion, IL-23R deficiency results in temporal and long-term changes in bone growth via regulation of bone formation.

Endocrinology ◽  
2003 ◽  
Vol 144 (5) ◽  
pp. 2132-2140 ◽  
Author(s):  
Keiichiro Kitahara ◽  
Muneaki Ishijima ◽  
Susan R. Rittling ◽  
Kunikazu Tsuji ◽  
Hisashi Kurosawa ◽  
...  

Intermittent PTH treatment increases cancellous bone mass in osteoporosis patients; however, it reveals diverse effects on cortical bone mass. Underlying molecular mechanisms for anabolic PTH actions are largely unknown. Because PTH regulates expression of osteopontin (OPN) in osteoblasts, OPN could be one of the targets of PTH in bone. Therefore, we examined the role of OPN in the PTH actions in bone. Intermittent PTH treatment neither altered whole long-bone bone mineral density nor changed cortical bone mass in wild-type 129 mice, although it enhanced cancellous bone volume as reported previously. In contrast, OPN deficiency induced PTH enhancement of whole-bone bone mineral density as well as cortical bone mass. Strikingly, although PTH suppressed periosteal bone formation rate (BFR) and mineral apposition rate (MAR) in cortical bone in wild type, OPN deficiency induced PTH activation of periosteal BFR and MAR. In cancellous bone, OPN deficiency further enhanced PTH increase in BFR and MAR. Analysis on the cellular bases for these phenomena indicated that OPN deficiency augmented PTH enhancement in the increase in mineralized nodule formation in vitro. OPN deficiency did not alter the levels of PTH enhancement of the excretion of deoxypyridinoline in urine, the osteoclast number in vivo, and tartrate-resistant acid phosphatase-positive cell development in vitro. These observations indicated that OPN deficiency specifically induces PTH activation of periosteal bone formation in the cortical bone envelope.


2018 ◽  
Vol 48 (5) ◽  
pp. 2091-2102 ◽  
Author(s):  
Xin Sui ◽  
Shijian Deng ◽  
Mengmeng Liu ◽  
Linlin Fan ◽  
Yunfei Wang ◽  
...  

Background/Aims: Activation of the Wnt/β-catenin signalling pathway has been widely investigated in bone biology and shown to promote bone formation. However, its specific effects on osteoclast differentiation have not been fully elucidated. Our study aimed to identify the role of β-catenin in osteoclastogenesis and bone homeostasis. Methods: In the present study, exon 3 in the β-catenin gene (Ctnnb1) allele encoding phosphorylation target serine/threonine residues was flanked by floxP sequences. We generated mice exhibiting conditional β-catenin activation (Ctsk-Cre;Ctnnb1flox(exon3)/+, designated CA-β-catenin) by crossing Ctnnb1flox(exon3)/flox(exon3) mice with osteoclast-specific Ctsk-Cre mice. Bone growth and bone mass were analysed by micro-computed tomography (micro-CT) and histomorphometry. To further examine osteoclast activity, osteoclasts were induced from bone marrow monocytes (BMMs) isolated from CA-β-catenin and Control mice in vitro. Osteoclast differentiation was detected by tartrate-resistant acid phosphatase (TRAP) staining, immunofluorescence staining and reverse transcription-quantitative PCR (RT–qPCR) analysis. Results: Growth retardation and low bone mass were observed in CA-β-catenin mice. Compared to controls, CA-β-catenin mice had significantly reduced trabecular bone numbers under growth plates as well as thinner cortical bones. Moreover, increased TRAP-positive osteoclasts were observed on the surfaces of trabecular bones and cortical bones in the CA-β-catenin mice; consistent results were observed in vitro. In the CA-β-catenin group, excessive numbers of osteoclasts were induced from BMMs, accompanied by the increased expression of osteoclast-associated marker genes. Conclusion: These results indicated that the constitutive activation of β-catenin in osteoclasts promotes osteoclast formation, resulting in bone loss.


2021 ◽  
Vol 22 (9) ◽  
pp. 4717
Author(s):  
Jin-Young Lee ◽  
Da-Ae Kim ◽  
Eun-Young Kim ◽  
Eun-Ju Chang ◽  
So-Jeong Park ◽  
...  

Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wang Gong ◽  
Xingren Chen ◽  
Tianshu Shi ◽  
Xiaoyan Shao ◽  
Xueying An ◽  
...  

As the society is aging, the increasing prevalence of osteoporosis has generated huge social and economic impact, while the drug therapy for osteoporosis is limited due to multiple targets involved in this disease. Zhuangguguanjie formulation (ZG) is extensively used in the clinical treatment of bone and joint diseases, but the underlying mechanism has not been fully described. This study aimed to examine the therapeutic effect and potential mechanism of ZG on postmenopausal osteoporosis. The ovariectomized (OVX) mice were treated with normal saline or ZG for 4 weeks after ovariectomy following a series of analyses. The bone mass density (BMD) and trabecular parameters were examined by micro-CT. Bone remodeling was evaluated by the bone histomorphometry analysis and ELISA assay of bone turnover biomarkers in serum. The possible drug–disease common targets were analyzed by network pharmacology. To predict the potential biological processes and related pathways, GO/KEGG enrichment analysis was performed. The effects of ZG on the differentiation phenotype of osteoclasts and osteoblasts and the predicted pathway were verified in vitro. The results showed that ZG significantly improved the bone mass and micro-trabecular architecture in OVX mice compared with untreated OVX mice. ZG could promote bone formation and inhibit bone resorption to ameliorate ovariectomy-induced osteoporosis as evidenced by increased number of osteoblast (N.Ob/Tb.Pm) and decreased number of osteoclast (N.Oc/Tb.Pm) in treated group compared with untreated OVX mice. After identifying potential drug–disease common targets by network pharmacology, GO enrichment analysis predicted that ZG might affect various biological processes including osteoblastic differentiation and osteoclast differentiation. The KEGG enrichment analysis suggested that PI3K/Akt and mTOR signaling pathways could be the possible pathways. Furthermore, the experiments in vitro validated our findings. ZG significantly down-regulated the expression of osteoclast differentiation markers, reduced osteoclastic resorption, and inhibited the phosphorylation of PI3K/Akt, while ZG obviously up-regulated the expression of osteogenic biomarkers, promoted the formation of calcium nodules, and hampered the phosphorylation of 70S6K1/mTOR, which can be reversed by the corresponding pathway activator. Thus, our study suggested that ZG could inhibit the PI3K/Akt signaling pathway to reduce osteoclastic bone resorption as well as hamper the mTORC1/S6K1 signaling pathway to promote osteoblastic bone formation.


1997 ◽  
Vol 12 (4) ◽  
pp. 590-597 ◽  
Author(s):  
Hiroaki Fuse ◽  
Seiji Fukumoto ◽  
Hideyuki Sone ◽  
Yoshiko Miyata ◽  
Tomoyuki Saito ◽  
...  

2012 ◽  
Vol 199 (7) ◽  
pp. 1145-1158 ◽  
Author(s):  
Hyung Joon Kim ◽  
Vikram Prasad ◽  
Seok-Won Hyung ◽  
Zang Hee Lee ◽  
Sang-Won Lee ◽  
...  

The precise regulation of Ca2+ dynamics is crucial for proper differentiation and function of osteoclasts. Here we show the involvement of plasma membrane Ca2+ ATPase (PMCA) isoforms 1 and 4 in osteoclastogenesis. In immature/undifferentiated cells, PMCAs inhibited receptor activator of NF-κB ligand–induced Ca2+ oscillations and osteoclast differentiation in vitro. Interestingly, nuclear factor of activated T cell c1 (NFATc1) directly stimulated PMCA transcription, whereas the PMCA-mediated Ca2+ efflux prevented NFATc1 activation, forming a negative regulatory loop. PMCA4 also had an anti-osteoclastogenic effect by reducing NO, which facilitates preosteoclast fusion. In addition to their role in immature cells, increased expression of PMCAs in mature osteoclasts prevented osteoclast apoptosis both in vitro and in vivo. Mice heterozygous for PMCA1 or null for PMCA4 showed an osteopenic phenotype with more osteoclasts on bone surface. Furthermore, PMCA4 expression levels correlated with peak bone mass in premenopausal women. Thus, our results suggest that PMCAs play important roles for the regulation of bone homeostasis in both mice and humans by modulating Ca2+ signaling in osteoclasts.


2018 ◽  
Vol 238 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Thomas Funck-Brentano ◽  
Karin H Nilsson ◽  
Robert Brommage ◽  
Petra Henning ◽  
Ulf H Lerner ◽  
...  

WNT signaling is involved in the tumorigenesis of various cancers and regulates bone homeostasis. Palmitoleoylation of WNTs by Porcupine is required for WNT activity. Porcupine inhibitors are under development for cancer therapy. As the possible side effects of Porcupine inhibitors on bone health are unknown, we determined their effects on bone mass and strength. Twelve-week-old C57BL/6N female mice were treated by the Porcupine inhibitors LGK974 (low dose = 3 mg/kg/day; high dose = 6 mg/kg/day) or Wnt-C59 (10 mg/kg/day) or vehicle for 3 weeks. Bone parameters were assessed by serum biomarkers, dual-energy X-ray absorptiometry, µCT and histomorphometry. Bone strength was measured by the 3-point bending test. The Porcupine inhibitors were well tolerated demonstrated by normal body weight. Both doses of LGK974 and Wnt-C59 reduced total body bone mineral density compared with vehicle treatment (P < 0.001). Cortical thickness of the femur shaft (P < 0.001) and trabecular bone volume fraction in the vertebral body (P < 0.001) were reduced by treatment with LGK974 or Wnt-C59. Porcupine inhibition reduced bone strength in the tibia (P < 0.05). The cortical bone loss was the result of impaired periosteal bone formation and increased endocortical bone resorption and the trabecular bone loss was caused by reduced trabecular bone formation and increased bone resorption. Porcupine inhibitors exert deleterious effects on bone mass and strength caused by a combination of reduced bone formation and increased bone resorption. We suggest that cancer targeted therapies using Porcupine inhibitors may increase the risk of fractures.


Neonatology ◽  
1992 ◽  
Vol 62 (1) ◽  
pp. 23-31 ◽  
Author(s):  
José Ignacio Rodríguez ◽  
José Palacios ◽  
Sebastián Rodríguez

2005 ◽  
Vol 202 (9) ◽  
pp. 1261-1269 ◽  
Author(s):  
Masataka Asagiri ◽  
Kojiro Sato ◽  
Takako Usami ◽  
Sae Ochi ◽  
Hiroshi Nishina ◽  
...  

NFATc1 and NFATc2 are functionally redundant in the immune system, but it was suggested that NFATc1 is required exclusively for differentiation of osteoclasts in the skeletal system. Here we provide genetic evidence that NFATc1 is essential for osteoclast differentiation in vivo by adoptive transfer of NFATc1−/− hematopoietic stem cells to osteoclast-deficient Fos−/− mice, and by Fos−/− blastocyst complementation, thus avoiding the embryonic lethality of NFATc1−/− mice. However, in vitro osteoclastogenesis in NFATc1-deficient cells was rescued by ectopic expression of NFATc2. The discrepancy between the in vivo essential role of NFATc1 and the in vitro effect of NFATc2 was attributed to selective autoregulation of the NFATc1 gene by NFAT through its promoter region. This suggested that an epigenetic mechanism contributes to the essential function of NFATc1 in cell lineage commitment. Thus, this study establishes that NFATc1 represents a potential therapeutic target for bone disease and reveals a mechanism that underlies the essential role of NFATc1 in bone homeostasis.


2021 ◽  
Author(s):  
Ao Chen ◽  
Xiaoting Li ◽  
Jingyu Zhao ◽  
Jiawen Zhou ◽  
Chunfeng Xie ◽  
...  

Abstract Background: Chronic alcohol is one of the leading risk factors for male osteoporosis . Angiogenesis and osteogenesis coupled by type-H vessels coordinate the biological process of bone homeostasis to prevent osteopenia. It is unknown whether alcohol inhibits type-H-vessel-dependent bone formation. Aims: This study aimed to determine whether alcohol hampers proliferation and promotes aging of endothelial cells of type-H vessels, and whether alcohol inhibits the differentiation of bone marrow-mesenchymal stem cells (BM-MSCs) into osteoblasts through reducing the number and secretion of endothelial cells in type-H vessels. Materials and Methods: Two-month-old mice fed with alcohol liquid diet (28% of calories) or normal liquid diet for two months. The tibias were isolated and detected with X-ray and micro-CT. Paraffin-embedded or frozen tibial sections were prepared and used for immunohistochemical or immunofluorescence staining respectively in vivo . Human Umbilical Vein Endothelial Cells (HUVECs) were treated with different-concentrated alcohol for 12 hours. The conditioned medium of the above HUVECs cells was collected to culture human BM-MSCs, which were induced to differentiate into osteoblasts in vitro . Results: The alcoholic diet retarded the bone growth and lead to osteoporosis, impaired bone formation of osteoblasts, and decreased CD31 hi EMCN hi type-H-vessel formation through inhibiting proliferation and promoting aging of endothelial cells in mice. Alcohol treatment obviously increased the expression of p16, while significantly decreased the expression of Bmi-1, CDK6, Cyclin D, E2F1 and BMP2 compared to vehicle. Alcohol inhibited the differentiation of BM-MSCs into osteoblasts through reducing the BMP2 secretion of endothelial cells in type-H vessels. Conclusions: Alcoholic diet impaired CD31 hi EMCN hi type-H-vessel formation through inhibiting proliferation and promoting aging of endothelial cells via Bmi-1/p16 signaling, and inhibited the differentiation of BM-MSCs into osteoblasts through reducing the BMP2 secretion of endothelial cells in type-H vessels. It provides a basis for developing a new treatment strategy targeting aging endothelial cells of type-H-vessel to prevent alcoholic osteopenia.


Sign in / Sign up

Export Citation Format

Share Document