scholarly journals Identifying molecular pathways and candidate genes associated with knob traits by transcriptome analysis in the goose (Anser cygnoides)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wangyang Ji ◽  
li E Hou ◽  
Xiaoya Yuan ◽  
Tiantian Gu ◽  
ZhuoYu Chen ◽  
...  

AbstractAnser cygnoides has a spherical crest on the beak roof, which is described as knob. However, the mechanisms affecting knob morphology are unclear. Here, we investigated the phenotypic characteristics and molecular basis of knob-size differences in Yangzhou geese. Anatomically, the knob was identified as frontal hump in the frontal area of the skull, rather than hump of upper beak. Although the frontal hump length, and height varied greatly in geese with different knob phenotypes, little was changed in the width. Histologically, knob skin in large-size knobs geese have a greater length in the stratum corneum, stratum spinosum, and stratum reticular than that in small-size knobs geese. Moveover, the 415 differentially expressed genes were found between the large knobs and small ones through transcriptome profiling. In addition, GO enrichment and KEGG pathway analysis revealed 455 significant GO terms and 210 KEGG pathways were enriched, respectively. Among these, TGF-β signaling and thyroid hormone synthesis-signaling pathways were identified to determine knob-size phenotype. Furthermore, BMP5, DCN, TSHR and ADCY3 were recognized to involve in the growth and development of knob. Our data provide comprehensive molecular determinants of knob size phenotype, which can potentially promote the genetic improvement of goose knobs.

2021 ◽  
Author(s):  
Wangyang Ji ◽  
Qi Xu ◽  
Wenming Zhao ◽  
li E Hou ◽  
Xiaoya Yuan ◽  
...  

Abstract Anser cygnoides has a spherical crest on the beak roof, which is described as knob. However, the mechanisms affecting knob morphology are unclear. Here, we investigated the phenotypic characteristics and molecular basis of knob-size differences in Yangzhou geese. The bony crest of konb was found in the frontal area of the skull, rather than hump of upper beak. Although the knob length, width, and height varied greatly in geese with different knob phenotypes, growth of the bony crest was mainly reflected in the length and height, but not the width. Histological analysis showed that knob skin in large-size knobs geese have a greater length in the stratum corneum, stratum spinosum, and stratum reticular. Transcriptome profiling revealed 415 differentially expressed genes involved in knob growth and development. In addition, GO enrichment and KEGG pathway analysis revealed 455 significant GO terms and 210 enriched KEGG pathways. We focused on the TGF-β-signaling and thyroid hormone synthesis-signaling KEGG pathways. Geese with larger knobs had increased ADCY3, TSHR, DCN, and BMP5 mRNA-expression levels, suggesting that both pathways (and the associated genes) mediate knob growth and development. Our data provide comprehensive molecular determinants of knob size, which can potentially be used to promote the genetic improvement of goose knobs to meet consumer preferences.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Songbai Yang ◽  
Xiaolong Zhou ◽  
Yue Pei ◽  
Han Wang ◽  
Ke He ◽  
...  

Estrus is an important factor for the fecundity of sows, and it is involved in ovulation and hormone secretion in ovaries. To better understand the molecular mechanisms of porcine estrus, the expression patterns of ovarian mRNA at proestrus and estrus stages were analyzed using RNA sequencing technology. A total of 2,167 differentially expressed genes (DEGs) were identified (P≤0.05, log2  Ratio≥1), of which 784 were upregulated and 1,383 were downregulated in the estrus compared with the proestrus group. Gene Ontology (GO) enrichment indicated that these DEGs were mainly involved in the cellular process, single-organism process, cell and cell part, and binding and metabolic process. In addition, a pathway analysis showed that these DEGs were significantly enriched in 33 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including cell adhesion molecules, ECM-receptor interaction, and cytokine-cytokine receptor interaction. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) confirmed the differential expression of 10 selected DEGs. Many of the novel candidate genes identified in this study will be valuable for understanding the molecular mechanisms of the sow estrous cycle.


2018 ◽  
Vol 5 (1) ◽  
pp. 170907 ◽  
Author(s):  
Dejun Ji ◽  
Bo Yang ◽  
Yongjun Li ◽  
Miaoying Cai ◽  
Wei Zhang ◽  
...  

The high-quality brush hair, or Type III brush hair, is coarse hair but with a tip and little medulla, which uniquely grows in the cervical carina of Chinese Haimen goat ( Capra hircus ). To unveil the mechanism of the formation of Type III brush hair in Haimen goats, transcriptomic RNAseq technology was used for screening of differentially expressed genes (DEGs) in the skin samples of the Type III and the non-Type III hair goats, and these DEGs were analysed by KEGG pathway analysis. The results showed that a total of 295 DEGs were obtained, mainly from three main functional types: cellular component, molecular function and biological process. These DEGs were mainly enriched in three KEGG pathways, such as protein processing in endoplasmic reticulum, MAPK, and complement and coagulation cascades. These DEGs gave hints to a possible mechanism, under which heat stress possibly initiated the formation. The study provided some useful biological information, which could give a new view about the roles of certain factors in hair growth and give hints on the mechanism of the formation of the Type III brush hair in Chinese Haimen goat.


2020 ◽  
Author(s):  
Yongbo Liu ◽  
Weiqing Wang ◽  
Yonghua Li ◽  
Fang Liu ◽  
Weijuan Han ◽  
...  

Abstract Background: Strategies are still employed to decrease insect damage in crop production, including conventional breeding with wild germplasm resources and transgenic technology with the insertion of foreign genes, while the insect-resistant mechanism of these strategies remains unclear. Results: Under the feeding of brown planthopper (Nilaparvata lugens), cultivated rice (WT) showed less DEGs (568) and DAPs (4) than transgenic rice (2098 and 11) and wild rice CL (1990 and 39) and DX (1932 and 25). Hierarchical cluster of DEGs showed gene expression of CL and DX were similar, slightly distinct to GT, and clearly different from WT. DEGs assigned to the GO terms were less in WT rice than GT, CL and DX, and “Metabolic process”, “cellular process”, “response to stimulus” were dominant. Wild rice CL significantly enriched in KEGG pathways of “Metabolic pathways”, “biosynthesis of secondary metabolites”, “plant-pathogen interaction” and “plant hormone signal transduction”. The iTRAQ analysis confirmed the results of RNA-seq, which showing the least GO terms and KEGG pathways responding to herbivory in the cultivated rice. Synthesize conclusions: This study demonstrated that similarity in the transcriptomic and proteomic response to herbivory for the wild rice and Bt-transgenic rice, while cultivated rice lack of enough pathways in response to herbivory. Our results highlighted the importance of conservation of crop wild species.


2021 ◽  
Author(s):  
Tanzeem Fatima ◽  
Rangachari Krishnan ◽  
Ashutosh Srivastava ◽  
Vageeshbabu S. Hanur ◽  
M. Srinivasa Rao

East Indian Sandalwood (Santalum album L.) is highly valued for its heartwood and its oil. There have been no efforts to comparative study of high and low oil yielding genetically identical sandalwood trees grown in similar climatic condition. Thus we intend to study a genome wide transcriptome analysis to identify the corresponding genes involved in high oil biosynthesis in S. album. In this study, 15 years old S. album (SaSHc and SaSLc) genotypes were targeted for analysis to understand the contribution of genetic background on high oil biosynthesis in S. album. A total of 28,959187 and 25,598869 raw PE reads were generated by the Illumina sequencing. 2.12 million and 1.811 million coding sequences were obtained in respective accessions. Based on the GO terms, functional classification of the CDS 21262, & 18113 were assigned into 26 functional groups of three GO categories; (4,168; 3,641) for biological process (5,758;4,971) cellular component and (5,108;4,441) for molecular functions. Total 41,900 and 36,571 genes were functionally annotated and KEGG pathways of the DEGs resulted 213 metabolic pathways. In this, 14 pathways were involved in secondary metabolites biosynthesis pathway in S. album. Among 237 cytochrome families, nine groups of cytochromes were participated in high oil biosynthesis. 16,665 differentially expressed genes were commonly detected in both the accessions (SaHc and SaSLc). The results showed that 784 genes were upregulated and 339 genes were downregulated in SaHc whilst 635 upregulated 299 downregulated in SaSLc S. album. RNA-Seq results were further validated by quantitative RT-PCR. Maximum Blast hits were found to be against Vitis vinifera. From this study we have identified additional number of cytochrome family in SaHc. The accessibility of a RNA-Seq for high oil yielding sandalwood accessions will have broader associations for the conservation and selection of superior elite samples/populations for further genetic improvement program.


2020 ◽  
Vol 38 (6) ◽  
pp. 1717-1729
Author(s):  
Ying Zhang ◽  
Francesca Garofano ◽  
Xiaolong Wu ◽  
Matthias Schmid ◽  
Peter Krawitz ◽  
...  

Summary Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), the first immune checkpoint to be targeted clinically, has provided an effective treatment option for various malignancies. However, the clinical advantages associated with CTLA-4 inhibitors can be offset by the potentially severe immune-related adverse events (IRAEs), including autoimmune thyroid dysfunction. To investigate the candidate genes and signaling pathways involving in autoimmune thyroid dysfunction related to anti-CTLA-4 therapy, integrated differentially expressed genes (DEGs) were extracted from the intersection of genes from Gene Expression Omnibus (GEO) datasets and text mining. The functional enrichment was performed by gene ontology (GO) annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Protein-protein interaction (PPI) network, module enrichment, and hub gene identification were constructed and visualized by the online Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software. A total of 22 and 17 integrated human DEGs in hypothyroidism and hyperthyroidism group related to anti-CTLA-4 therapy were identified, respectively. Functional enrichment analysis revealed 24 GO terms and 1 KEGG pathways in the hypothyroid group and 21 GO terms and 2 KEGG pathways in the hyperthyroid group. After PPI network construction, the top five hub genes associated with hypothyroidism were extracted, including ALB, MAPK1, SPP1, PPARG, and MIF, whereas those associated with hyperthyroidism were ALB, FCGR2B, CD44, LCN2, and CD74. The identification of the candidate key genes and enriched signaling pathways provides potential biomarkers for autoimmune thyroid dysfunction related to anti-CTLA-4 therapy and might contribute to the future diagnosis and management of IRAEs for cancer patients.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2071
Author(s):  
Sunirmal Sheet ◽  
Srikanth Krishnamoorthy ◽  
Jihye Cha ◽  
Soyoung Choi ◽  
Bong-Hwan Choi

The present study aimed to identify causative loci and genes enriched in pathways associated with canine obesity using a genome-wide association study (GWAS). The GWAS was first performed to identify candidate single-nucleotide polymorphisms (SNPs) associated with obesity and obesity-related traits including body weight and blood sugar in 18 different breeds of 153 dogs. A total of 10 and 2 SNPs were found to be significantly (p < 3.74 × 10−7) associated with body weight and blood sugar, respectively. None of the SNPs were identified to be significantly associated with obesity trait. We subsequently followed up the GWAS analysis with gene-set enrichment and pathway analyses. A gene-set with 1057, 1409, and 1243 SNPs annotated to 449, 933 and 820 genes for obesity, body weight, and blood sugar, respectively was created by sub-setting the GWAS result at a threshold of p < 0.01 for the gene-set enrichment analysis. In total, 84 GO and 21 KEGG pathways for obesity, 114 GO and 44 KEGG pathways for blood sugar, 120 GO and 24 KEGG pathways for body weight were found to be enriched. Among the pathways and GO terms, we highlighted five enriched pathways (Wnt signaling pathway, adherens junction, pathways in cancer, axon guidance, and insulin secretion) and seven GO terms (fat cell differentiation, calcium ion binding, cytoplasm, nucleus, phospholipid transport, central nervous system development, and cell surface) that were found to be shared among all the traits. Our data provide insights into the genes and pathways associated with obesity and obesity-related traits.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jian Zhang ◽  
ZhiHao Xing ◽  
Mingming Ma ◽  
Ning Wang ◽  
Yu-Dong Cai ◽  
...  

Identifying disease genes is one of the most important topics in biomedicine and may facilitate studies on the mechanisms underlying disease. Age-related macular degeneration (AMD) is a serious eye disease; it typically affects older adults and results in a loss of vision due to retina damage. In this study, we attempt to develop an effective method for distinguishing AMD-related genes. Gene ontology and KEGG enrichment analyses of known AMD-related genes were performed, and a classification system was established. In detail, each gene was encoded into a vector by extracting enrichment scores of the gene set, including it and its direct neighbors in STRING, and gene ontology terms or KEGG pathways. Then certain feature-selection methods, including minimum redundancy maximum relevance and incremental feature selection, were adopted to extract key features for the classification system. As a result, 720 GO terms and 11 KEGG pathways were deemed the most important factors for predicting AMD-related genes.


Author(s):  
M.Gonzalo Claros ◽  
Pedro Seoane ◽  
Rosario Carmona ◽  
Adoración Zafra ◽  
Antonio J. Castro Gómez ◽  
...  

Transcriptome databases are an important source of structural and functional information about an organism, for example, plants without a sequenced genome. This is the case of the olive tree (Olea europaea L.), one of the most important oil-producing plant species all over the world. In addition, reproductive tissues and seeds are the less studied part of these plant species in spite of their importance in allergies, germination success, plant sterility, as well as being an important source of valuable components for agro-food industries, including seed storage proteins and trialcylglycerides. Therefore, an automated workflow has been developed using our tool AutoFlow to construct an annotated transcriptome from raw reads (Sanger, Illumina or Roche/454 or a combination of them) combining open source software (Bowtie2, CAP2, Euler-SR, MIRA3, Velvet/Oases, AutoFact, MREPS, GigaBayes…) with software developed by our group (SeqTrimNext, Full-LengtherNext, Sma3). The resulting transcriptomes were used to build a database ReprOlive (http://reprolive.eez.csic.es) where descriptions, GO terms, InterPro signatures, EC numbers, graphical localization of enzymes in KEGG pathways, ORFs, SSRs, and the corresponding orthologues in Arabidopsis thaliana from TAIR and RefSeq can be browsed. Finally, expression data can be accessed and, in addition to a BLAST search, a the semantic conceptualization using RDF allowing for Linked Data search was implemented to extract the most updated information related to enzymes, interactions, allergens, and structures. The olive tree reproductive transcriptome was constructed from 2,077,309 raw reads (454/Roche Titanium+) and 1,549 Sanger sequences from different stages of pollen and stigma development, resulting in 72,846 contigs, of which 63,965 (87.8%) included at least one functional annotation, and 55,356 (75.9%) had an orthologue. Using different seed stages, 1,425,911 raw reads (454/Roche Titanium+) are in use for obtaining the seed transcriptome. Uses of these transcriptomes can be found in communications by Carmona et al. and JIménez-Quesada et al. in this congress. This work was supported by co-funding from the ERDF and Spanish MINECO and Andalusian PAIDI to the grants BFU2011-22779, TIN2011-25840, TIN2014-58304-R, P10-CVI-6075, P10-AGR-6274, P11-CVI-7487, P11-TIC-7529 and P12-TIC-1519. Authors also acknowledge the use of the SCBI facilities of UMA.


Sign in / Sign up

Export Citation Format

Share Document