scholarly journals Concomitant attenuation of HMGCR expression and activity enhances the growth inhibitory effect of atorvastatin on TGF-β-treated epithelial cancer cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katsuhiko Warita ◽  
Takuro Ishikawa ◽  
Akihiro Sugiura ◽  
Jiro Tashiro ◽  
Hiroaki Shimakura ◽  
...  

AbstractEpithelial-mesenchymal transition (EMT) in primary tumor cells is a key prerequisite for metastasis initiation. Statins, cholesterol-lowering drugs, can delay metastasis formation in vivo and attenuate the growth and proliferation of tumor cells in vitro. The latter effect is stronger in tumor cells with a mesenchymal-like phenotype than in those with an epithelial one. However, the effect of statins on epithelial cancer cells treated with EMT-inducing growth factors such as transforming growth factor-β (TGF-β) remains unclear. Here, we examined the effect of atorvastatin on two epithelial cancer cell lines following TGF-β treatment. Atorvastatin-induced growth inhibition was stronger in TGF-β-treated cells than in cells not thusly treated. Moreover, treatment of cells with atorvastatin prior to TGF-β treatment enhanced this effect, which was further potentiated by the simultaneous reduction in the expression of the statin target enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). Dual pharmacological targeting of HMGCR can thus strongly inhibit the growth and proliferation of epithelial cancer cells treated with TGF-β and may also improve statin therapy-mediated attenuation of metastasis formation in vivo.

Author(s):  
Minmin Song ◽  
Chenrui Cao ◽  
Zhenhua Zhou ◽  
Simin Yao ◽  
Peipei Jiang ◽  
...  

Abstract Intrauterine adhesions (IUAs), the leading cause of uterine infertility, are characterized by endometrial fibrosis. The management of IUA is challenging because the pathogenesis of the disease largely unknown. In this study, we demonstrate that the mRNA and protein levels of high mobility group AT-hook 2 (HMGA2) were increased by nearly 3-fold (P < 0.0001) and 5-fold (P = 0.0095) in the endometrial epithelial cells (EECs) of IUA patients (n = 18) compared to controls. In vivo and in vitro models of endometrial fibrosis also confirmed the overexpression of HMGA2 in EECs. In vitro cell experiments indicated that overexpression of HMGA2 promoted the epithelial–mesenchymal transition (EMT) while knockdown of HMGA2 reversed transforming growth factor-β-induced EMT. A dual luciferase assay confirmed let-7d microRNA downregulated HMGA2 and repressed the pro-EMT effect of HMGA2 in vitro and in vivo. Therefore, our data reveal that HMGA2 promotes IUA formation and suggest that let-7d can depress HMGA2 and may be a clinical targeting strategy in IUA.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Yanlu Xiong ◽  
Yangbo Feng ◽  
Jinbo Zhao ◽  
Jie Lei ◽  
Tianyun Qiao ◽  
...  

AbstractTranscription factor AP-2α (TFAP2A) was previously regarded as a critical regulator during embryonic development, and its mediation in carcinogenesis has received intensive attention recently. However, its role in lung adenocarcinoma (LUAD) has not been fully elucidated. Here, we tried to investigate TFAP2A expression profiling, clinical significance, biological function and molecular underpinnings in LUAD. We proved LUAD possessed universal TFAP2A high expression, indicating a pervasively poorer prognosis in multiple independent datasets. Then we found TFAP2A was not indispensable for LUAD proliferation, and exogenous overexpression even caused repression. However, we found TFAP2A could potently promote LUAD metastasis possibly by triggering epithelial–mesenchymal transition (EMT) in vitro and in vivo. Furthermore, we demonstrated TFAP2A could transactivate Pregnancy-specific glycoprotein 9 (PSG9) to enhance transforming growth factor β (TGF-β)-triggering EMT in LUAD. Meanwhile, we discovered suppressed post-transcriptional silencing of miR-16 family upon TFAP2A partly contributed to TFAP2A upregulation in LUAD. In clinical specimens, we also validated cancer-regulating effect of miR-16 family/TFAP2A/PSG9 axis, especially for lymph node metastasis of LUAD. In conclusion, we demonstrated that TFAP2A could pivotally facilitate LUAD progression, possibly through a novel pro-metastasis signaling pathway (miR-16 family/TFAP2A/PSG9/ TGF-β).


2021 ◽  
Author(s):  
Honghu Xie ◽  
Yu He ◽  
Yugang Wu ◽  
Qicheng Lu

Abstract Background: Gastric cancer (GC) is the second leading cause of cancer-related deaths. Because it is hard to diagnose at early stage, the overall 5 years survival rate is lower than 25%. High migration is the main hallmark of malignant cells at advanced stage of GC. Thus, it is urgent to find biomarkers for early diagnosis and more effective therapy of GC.Methods: In this study, silencing and overexpression lentiviruses targeting the ubiquitin-conjugating enzyme E2 D1 (UBE2D1), transwell, wound healing, and pulmonary metastasis mouse model were applied to analyze the function of UBE2D1 in vitro and in vivo. Real-time PCR and immunohistochemistry were used to elucidate the level of UBE2D1 in GC samples.Results: Silencing of UBE2D1 inhibited cell migration and the levels of Epithelial-mesenchymal transition (EMT) makers (MMP2 and MMP9) in AGS and MKN45 cells. Silencing of UBE2D1 inhibited cell metastasis in mouse model. On the contrary, UBE2D1 overexpression increased cell migration and the levels of MMP2 and MMP9 in MGC-803 cells. Further, silencing of UBE2D1 decreased the ubiquitination level of mothers against decapentaplegic homolog 4 (SMAD4), and the increase of cell migration induced by UBE2D1 overexpression could be reversed by SMAD4.Conclusion: Silencing of UBE2D1 inhibited cell migration through transforming growth factor β (TGF-β)/SMAD4 signaling pathway in GC.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Honghu Xie ◽  
Yu He ◽  
Yugang Wu ◽  
Qicheng Lu

Abstract Background Gastric cancer (GC) is the second leading cause of cancer-related deaths. Because it is hard to diagnose at early stage, the overall 5 years survival rate is lower than 25%. High migration is the main hallmark of malignant cells at advanced stage of GC. Thus, it is urgent to find biomarkers for early diagnosis and more effective therapy of GC. Methods In this study, lentivirus-mediated silencing and overexpression lentiviruses targeting the ubiquitin-conjugating enzyme E2 D1 (UBE2D1), transwell, wound healing, and pulmonary metastasis mouse model were applied to analyze the function of UBE2D1 in vitro and in vivo. Real-time PCR and immunohistochemistry were used to elucidate the level of UBE2D1 in GC samples. Results Silencing of UBE2D1 inhibited cell migration and the levels of epithelial-mesenchymal transition makers (MMP2 and MMP9) in AGS and MKN45 cells. Silencing of UBE2D1 inhibited cell metastasis in mouse model. On the contrary, UBE2D1 overexpression increased cell migration and the levels of MMP2 and MMP9 in MGC-803 cells. Further, silencing of UBE2D1 decreased the ubiquitination level of mothers against decapentaplegic homolog 4 (SMAD4), and the increase of cell migration induced by UBE2D1 overexpression could be reversed by SMAD4. Conclusion Silencing of UBE2D1 inhibited cell migration through transforming growth factor β (TGF-β)/SMAD4 signaling pathway in GC.


2018 ◽  
Vol 19 (11) ◽  
pp. 3672 ◽  
Author(s):  
Yutaro Tsubakihara ◽  
Aristidis Moustakas

Metastasis of tumor cells from primary sites of malignancy to neighboring stromal tissue or distant localities entails in several instances, but not in every case, the epithelial-mesenchymal transition (EMT). EMT weakens the strong adhesion forces between differentiated epithelial cells so that carcinoma cells can achieve solitary or collective motility, which makes the EMT an intuitive mechanism for the initiation of tumor metastasis. EMT initiates after primary oncogenic events lead to secondary secretion of cytokines. The interaction between tumor-secreted cytokines and oncogenic stimuli facilitates EMT progression. A classic case of this mechanism is the cooperation between oncogenic Ras and the transforming growth factor β (TGFβ). The power of TGFβ to mediate EMT during metastasis depends on versatile signaling crosstalk and on the regulation of successive waves of expression of many other cytokines and the progressive remodeling of the extracellular matrix that facilitates motility through basement membranes. Since metastasis involves many organs in the body, whereas EMT affects carcinoma cell differentiation locally, it has frequently been debated whether EMT truly contributes to metastasis. Despite controversies, studies of circulating tumor cells, studies of acquired chemoresistance by metastatic cells, and several (but not all) metastatic animal models, support a link between EMT and metastasis, with TGFβ, often being a common denominator in this link. This article aims at discussing mechanistic cases where TGFβ signaling and EMT facilitate tumor cell dissemination.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Min Deng ◽  
Xiaodong Cai ◽  
Ling Long ◽  
Linying Xie ◽  
Hongmei Ma ◽  
...  

Abstract Background Accumulating evidence indicates that CD36 initiates metastasis and correlates with an unfavorable prognosis in cancers. However, there are few reports regarding the roles of CD36 in initiation and metastasis of cervical cancer. Methods Using immunohistochemistry, we analyzed 133 cervical cancer samples for CD36 protein expression levels, and then investigated the correlation between changes in its expression and clinicopathologic parameters. The effect of CD36 expression on the epithelial–mesenchymal transition (EMT) in cervical cancer cells was evaluated by Western immunoblotting analysis. In vitro invasion and in vivo metastasis assays were also used to evaluate the role of CD36 in cervical cancer metastasis. Results In the present study, we confirmed that CD36 was highly expressed in cervical cancer samples relative to normal cervical tissues. Moreover, overexpression of CD36 promoted invasiveness and metastasis of cervical cancer cells in vitro and in vivo, while CD36 knockdown suppressed proliferation, migration, and invasiveness. We demonstrated that TGF-β treatment attenuated E-cadherin expression and enhanced the expression levels of CD36, vimentin, slug, snail, and twist in si-SiHa, si-HeLa, and C33a–CD36 cells, suggesting that TGF-β synergized with CD36 on EMT via active CD36 expression. We also observed that the expression levels of TGF-β in si-SiHa cells and si-HeLa cells were down-regulated, whereas the expression levels of TGF-β were up-regulated in C33a–CD36 cells. These results imply that CD36 and TGF-β interact with each other to promote the EMT in cervical cancer. Conclusions Our findings suggest that CD36 is likely to be an effective target for guiding individualized clinical therapy of cervical cancer.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Changhu Lee ◽  
Hyung Won Ryu ◽  
Sahee Kim ◽  
Min Kim ◽  
Sei-Ryang Oh ◽  
...  

AbstractBreast cancer is one of the most common cancers in women and is associated with a high mortality rate. The majority of deaths resulting from breast cancer are attributable to metastatic growth; in addition, chemoresistance is a major concern in the treatment of patients with breast cancer. However, limited drugs are available for the treatment of metastatic breast cancer. In this study, the chemoadjuvant effects of a methanolic extract from the leaves of Pseudolysimachion rotundum var. subintegrum (NC13) and an active component isolated from the plant, verminoside (Vms), were evaluated. Furthermore, their potent anti-metastatic activities were validated in vitro and in vivo in animal models. The anti-metastatic and chemosensitizing activities of NC13 and Vms on cisplatin treatment were found to be partly mediated by suppression of the epithelial–mesenchymal transition of cancer cells. Collectively, our results implied that NC13 and its bioactive component Vms could be developed as effective chemoadjuvants in combination with conventional therapeutics.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Songwen Ju ◽  
Feng Wang ◽  
Yirong Wang ◽  
Songguang Ju

AbstractHypoxic stress plays a pivotal role in cancer progression; however, how hypoxia drives tumors to become more aggressive or metastatic and adaptive to adverse environmental stress is still poorly understood. In this study, we revealed that CSN8 might be a key regulatory switch controlling hypoxia-induced malignant tumor progression. We demonstrated that the expression of CSN8 increased significantly in colorectal cancerous tissues, which was correlated with lymph node metastasis and predicted poor patient survival. CSN8 overexpression induces the epithelial-mesenchymal transition (EMT) process in colorectal cancer cells, increasing migration and invasion. CSN8 overexpression arrested cell proliferation, upregulated key dormancy marker (NR2F1, DEC2, p27) and hypoxia response genes (HIF-1α, GLUT1), and dramatically enhanced survival under hypoxia, serum deprivation, or chemo-drug 5-fluorouracil treatment conditions. In particular, silenced CSN8 blocks the EMT and dormancy processes induced by the hypoxia of 1% O2 in vitro and undermines the adaptive capacity of colorectal cancer cells in vivo. The further study showed that CSN8 regulated EMT and dormancy partly by activating the HIF-1α signaling pathway, which increased HIF-1α mRNA expression by activating NF-κB and stabilized the HIF-1α protein via HIF-1α de-ubiquitination. Taken together, CSN8 endows primary colorectal cancer cells with highly aggressive/metastatic and adaptive capacities through regulating both EMT and dormancy induced by hypoxia. CSN8 could serve as a novel prognostic biomarker for colorectal cancer and would be an ideal target of disseminated dormant cell elimination and tumor metastasis, recurrence, and chemoresistance prevention.


Sign in / Sign up

Export Citation Format

Share Document