scholarly journals A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Osama Zaid ◽  
Jawad Ahmad ◽  
Muhammad Shahid Siddique ◽  
Fahid Aslam ◽  
Hisham Alabduljabbar ◽  
...  

AbstractToday, it’s getting harder to find natural resources for concrete production. Utilization of the waste materials not just helps in getting them used in concrete, cement, and other construction materials, but also has various secondary advantages, for example, saving in energy, decrease in landfill cost, and protecting climate from pollution. Considering this in the development of modern structural design, utilizing waste materials instead of natural aggregate is a good option to make concrete that is sustainable and eco-friendly. The present research aims to find the impact of adding glass fiber into sustainable concrete made with silica fume, as a partial replacement of cement, and coconut shell added with different ratios as a replacement of coarse aggregate, on concrete mechanical and durability aspects. Various blends were made, with coconut shell as a substitution of coarse aggregates with different ratios. Portland cement was substituted with silica fume at 5%, 10%, 15%, and 20% by cement weight in all concrete blends. The volume ratios of glass fibers utilized in this study were 0.5%, 1.0%, 1.5% and 2.0%. Adding glass fibers increases concrete density to some extent and then marginally reduces the density of coconut shell concrete. When the percentage of glass fibers increases, the compressive, flexural and split tensile strength of coconut shell concrete also increases. From the lab results and SEM images of the present research display that glass fibers might be utilized in coconut shell concrete to enhance its mechanical and durability attributes, to accomplish sustainable concrete with acceptable strength with ease.

Over the past few decades, extensive studies were in progress all around the globe in concrete technology in finding sustainable alternative materials that can partially or fully replace OPC along with the requirements like durability and strength aspects. Among all the available alternative materials, the industrial waste exhausts like fly ash, silica fume, GGBS, metakaoline and rice husk ash etc., are found to be quite promising. In the present study, a mix design high strength grade concrete of M60 is produced by using binary blending technique by the utilization of Silica fume(SF) and Metakaoline(MK) as partial replacement by weight of cement at different blended percentages ranging from 0-30% in the increments of 10% along with glass fibers having aspect ratio of 100. The different proportions of glass fibers are added in the volume fraction percentages of 0.5-2% in the increments of 0.5%. The test results of fiber reinforced specimens with different percentages of binary blend are compared with control specimens to study the behavior of FRC properties with various percentages of the blends as partial replacement by weight of cement. The test results concluded that the optimum blended percentage of silica fume and metakaoline is 15% i.e., 7.5%SF+7.5%MK along with SP percentage as 1.5% and glass fiber percentage as 1.5% when compared with the control mix. Further, light weight aggregate i.e., pumice stone is replaced to this mix to coarse aggregate at percentages of 25%,50%,75% and 100% respectively and the compressive strength characteristic along with density of concrete was studied and reported


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2064 ◽  
Author(s):  
Stanisław Kuciel ◽  
Patrycja Bazan ◽  
Aneta Liber-Kneć ◽  
Aneta Gądek-Moszczak

The paper evaluated the possibility of potential reinforcing of poly(oxymethylene) (POM) by glass fiber and the influence of fiberglass addition on mechanical properties under dynamic load. Four types of composites with glass fiber and another four with carbon fiber were produced. The fiber content ranged from 5% to 40% by weight. In the experimental part, the basic mechanical and fatigue properties of POM-based composites were determined. The impact of water absorption was also investigated. The influence of fiber geometry on the mechanical behavior of fiber-reinforced composites of various diameters was determined. To refer to the effects of reinforcement and determine the features of the structure scanning electron microscopy images were taken. The results showed that the addition of up to 10 wt %. fiberglass increases the tensile properties and impact strength more than twice, the ability to absorb energy also increases in relation to neat poly(oxymethylene). Fiber geometry also has a significant impact on the mechanical properties. The study of the mechanical properties at dynamic loads over time suggests that composites filled with a smaller fiber diameter have better fatigue properties.


2013 ◽  
Vol 365-366 ◽  
pp. 1148-1151 ◽  
Author(s):  
Jia Horng Lin ◽  
Zheng Yan Lin ◽  
Jin Mao Chen ◽  
Chen Hung Huang ◽  
Ching Wen Lou

This study produces the far-infrared emitting composites by using impact-resistant polypropylene, short glass fibers, and far-infrared masterbatches. The addition of short glass fiber and far-infrared masterbatches is then evaluated to determine their influence on the mechanical properties and far-infrared emissivity of the resulting composites. The experimental results show that with an increase in the content of short glass fibers, the tensile strength increases from 34 MPa to 56 MPa, the far-infrared emissivity increases from 0.85 to 0.93, but the impact strength decreases from 1037 J/m to 197 J/m, proving that the resulting composites have desired mechanical properties and far-infrared emission.


Conventionally used cement –a primary binder also a necessitate element in producing concrete rates first in the construction industry. Production of conventional cement requires a greater skill and is energy intensive. The usage of waste materials in the production of concrete and reduction in cement content was only the possible alternative in the past decade. Associated risks with the production of Ordinary Portland Cement are well known. A greener aided with a natural friendly claim can be made only with the usage of the waste materials and reduction in evolving respiration gas to the atmosphere. Almost all works are carried out using source material fly ash, with fine aggregate and coarse aggregate. Concrete plays a vital role in the construction industry and on the other hand, river sand; one of the essential material has become very expensive which is a scarce material. Depletion of sand is a hectic issue due to increased usage of sand in construction. No other replacement materials such as quarry rock dust is not concentrated in casting geopolymer specimens. Even though in some research papers the replacement materials are added only in partial replacement without aiming on 100% replacement. Many researches mainly focus towards test results of GPC specimens using steel fibers, glass fibers. But the study related to natural fibers and hybrid fibers are found scarce. The main part of this work aimed at characterizing the engineering strength properties of geopolymer concrete by 100% replacement of fine aggregate with quarry rock dust. Hence, combination of flyash and quarry rock dust in GPC have been considered for evaluating the mechanical properties of geopolymer concrete. Also, investigation focuses on incorporation of three different fibers namely polypropylene fibers(PF), coir fibers(CF) and hybrid fibers(HF) in different percentage of proportions such as 0.5%,1%,and 1.5% to determine the maximum strength properties of GPC.


Author(s):  
A Aswani and Janardhan G

In construction world concrete plays a vital role, around 60% of structure consists of Concrete. However, the production of Portland cement, an essential constituent of concrete, leads to the release of significant amounts of CO2, depletion of natural resources and environmental degradation. This paper investigates the compressive strength of concrete by replacing cement with GGBS and silica fume effect of glass fibers on performance of concrete is studied. In this present work a humble attempt had been made to evaluate and compare the compressive strengths of GGBS blended concrete cubes with controlled concrete cubes cured under sea water for 28 days. By conducting the tests on the cubes, conclusions were drawn after plotting and analyzing the results. Compressive strength test is conducted on the samples after 28 days. The optimum value is obtained at 15% replacement with GGBS and 5% with Silica fume. In this study again we trailed addition with Glass fibers with the percentage of 0.5%,1.0%,1.5%, compressive strength have been studied. Finally at 1.0% addition we get maximum strength compared to controlled mix.


2021 ◽  
Vol 915 (1) ◽  
pp. 012002
Author(s):  
M Chekanovich ◽  
S Romanenko ◽  
Ya Andriievska

Abstract The problem of recycling plastic waste is quite acute both in Ukraine and for most countries of the world. The use of plastic processing products can be considered an urgent problem of society from the point of view of environmental protection and environmental safety. Today, developments are underway in the field of using polymers in one of the largest sectors of production – the construction industry. In recent years, the scientific community has been actively studying the issue of using plastic waste in the manufacture of reinforced concrete structures, that is, partial replacement of the filler with plastic particles. At the same time, in the short term, sufficient resources of plastic waste will be provided, which will come in value for collection and recycling. The use of plastic in concrete production technology will not only reduce the negative impact of waste on the environment, but also develop concrete of more sustainable quality and lower cost. The aim of the study is determining the amount of plastic waste that can be utilized through introducing it into concrete mix without reducing the strength of the concrete. Here we have considered the issue of the impact of the degree of plastic grinding on concrete strength. The research findings show that the introduction of plastic in an amount up to 3.5% of the volume of concrete as a substitute for the aggregate does not reduce its compressive or flexural strength.


2021 ◽  
Vol 889 (1) ◽  
pp. 012023
Author(s):  
Bibek Kumar Gupta ◽  
Sandeep singh

Abstract Electrical and Electronic waste (e-waste) is increasing rapidly in the world, and is passing severe toxic waste issues to the human beings and the environment. About 80% to 85% of various electronic items, wastes are decomposed in landfills which might include or discharge lethal gases into air, may have an effect on human beings and environment. For solving and minimizing the discarding of huge quantity E-waste substance, recycle of E-waste materials in concrete production is well thought-out as the mainly possible purpose. It helps to eliminate the concrete materials deficiency issues that are currently going on in construction industry and it also helps to develop the strength of concrete mix and decrease the rate of concrete. In the current study, a novel attempt has been made by adding optimum weight polypropylene fiber with partial replacement of 20 mm E-waste particles as course aggregate. E-waste with pp fiber is employed in concrete in order to improve the strength of concrete mix. The work was carried out on M35 grade concrete specimen (without use of E-waste particles and pp fibers) and with a partial substitution of course aggregates with E-waste particles in range of 0%, 10%, 20% and 30% with respect to the weight of aggregate and pp fibers in the range of 0%, 0.2%, 0.4% and 0.6% with respect to the weight of cement. Comp. strength, Tensile strength and flexural strength of fibrous concrete with E-waste materials and not including e-waste materials as course aggregates was experimented which presented an excellent strength gain.


Concrete is a building material which is being utilized excessively in the world adjacent to water. The nature is influenced due to the extraction of raw matter and also because of the evolution of gases like CO2 . In the ongoing years, there is a speedy growth in the production of waste materials like glass wastes, plastic, Ground Granulated Blast furnace Slag, silica fume, coal ash, wood ash, rice husk ash, etc. Controlling and discarding issues emerge due to these wastes and inflict havoc on the nature. So as to curtail these issues, the waste materials are used as additives or partial substitutions for cement and aggregates in construction field. This paper focuses on strength properties and durability of concrete containing glass fibers by partial substitution of cement and fine aggregate with GGBS and Coal ash respectively. For this work, mix design using IS method is prepared for M30 grade and the tests are conducted for various dosages of glass fibers as 0.5, 1%, 1.5% and 2% by weight of cement. The substitution degree of GGBS is 30% and that of coal ash is 20%. The obtained outcomes are contrasted with conventional concrete


Author(s):  
S. Hussain ◽  
J.S. Yadav

Purpose: Cement concrete is characterized as brittle in nature, the loading capacity of which is completely lost once failure is initiated. This characteristic, which limits the application of the material, can in one way be overcome by the addition of some small amount of short randomly distributed fibers (steel, glass, synthetic). Design/methodology/approach: The present study deals with the inclusion of alkali resistant glass fibers in concrete by percentage weight of cement. The mechanical properties such as compressive strength and split tensile strength have been studied after exposing the concrete samples to elevated temperatures of up to 500°C. Water binder ratios of 0.4, 0.45, 0.5, 0.55 and 0.6 have been used to prepare design mix proportions of concrete to achieve a characteristic strength of 30 MPa. The depth of carbonation post elevated temperature exposure has been measured by subjecting the concrete samples to an accelerated carbonation (5%) condition in a controlled chamber. Findings: Conclusions have been drawn in accordance to the effect of fiber replacement and temperature increment. The concrete mixes with fiber content of 1% by weight of cement had shown better strength in compression and tension compared to the other dosages and conventional concrete (without fiber). Microcracking due to internal stream pressure reduced the mechanical strengths of concrete at elevated temperatures. Also, from TGA it was observed that the amount of calcium carbonate in samples with fiber added, post carbonation was less than the mixes without fiber in it. Research limitations/implications: The present study has been limited to alkali resistant glass fibers as the conventional glass fibers undergo corrosion due to hydration. Practical implications: The glass fiber reinforced concrete can be used in the building renovation works, water and drainage works, b ridge and tunnel lining panels etc. Originality/value: Based upon the available literature, very seldom the studies are addressing the behaviour of alkali resistant glass fiber concrete and its exposure to elevated temperatures.


2019 ◽  
Vol 1 (6) ◽  
pp. 537-542
Author(s):  
Anukarthuika B ◽  
Priyanka S ◽  
Preethika K

Concrete plays important role in the construction of structures. The need for concrete increases day by day. Material required for concrete are getting depleted, so there is a requirement to find alternatives. At the same time the alternative materials should posses the property of the actual materials used in concrete and also they must provide the required strength to the concrete. Normally Concrete is firm in compression but anemic in tension and shear. The purpose of this study is to find the behaviour of concrete reinforced with hybrid macro fibers. By adding Glass fibers in percentages like 0.2%, 0.4%, 0.6%& 0.8% to the concrete, the properties like compressive, flexural and split tensile strength are investigated. The optimum percentage of glass fiber was found to be 0.4%. Quarry dust has been widely used in structures since ancient times. The present study is aimed at utilizing waste Quarry dust (WQD) in construction industry itself as fine aggregate in concrete, replacing natural sand and also by adding the optimum percentage of glass fibers. The replacement is done partially and fully in the various proportions like 0%, 25%, 50%, 75% and 100% and its effect on properties of concrete were investigated. The optimum percentage of the concrete by adding 0.4% of glass fiber and the proportions was found to be 25%.


Sign in / Sign up

Export Citation Format

Share Document