scholarly journals A new galling insect model enhances photosynthetic activity in an obligate holoparasitic plant

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryo Murakami ◽  
Ryo Ushima ◽  
Ryoma Sugimoto ◽  
Daisuke Tamaoki ◽  
Ichirou Karahara ◽  
...  

AbstractInsect-induced galls are microhabitats distinct from the outer environment that support inhabitants by providing improved nutrients, defence against enemies, and other unique features. It is intriguing as to how insects reprogram and modify plant morphogenesis. Because most of the gall systems are formed on trees, it is difficult to maintain them in laboratories and to comprehend the mechanisms operative in them through experimental manipulations. Herein, we propose a new model insect, Smicronyx madaranus, for studying the mechanisms of gall formation. This weevil forms spherical galls on the shoots of Cuscuta campestris, an obligate parasitic plant. We established a stable system for breeding and maintaining this ecologically intriguing insect in the laboratory, and succeeded in detailed analyses of the gall-forming behaviour, gall formation process, and histochemical and physiological features. Parasitic C. campestris depends on host plants for its nutrients, and usually shows low chlorophyll content and photosynthetic activity. We demonstrate that S. madaranus-induced galls have significantly increased CO2 absorbance. Moreover, chloroplasts and starch accumulated in gall tissues at locations inhabited by the weevil larvae. These results suggest that the gall-inducing weevils enhance the photosynthetic activity in C. campestris, and modify the plant tissue to a nutrient-rich shelter for them.

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1399
Author(s):  
Lyuben Zagorchev ◽  
Alexandra Atanasova ◽  
Ivanela Albanova ◽  
Anelia Traianova ◽  
Petko Mladenov ◽  
...  

Members of the genus Cuscuta are generally considered to be non-photosynthetic, stem-holoparasitic flowering plants. Under certain circumstances, at least some members of the genus are capable of limited photosynthesis. The galls of the Smicronyx weevils formed on Cuscuta campestris are particularly rich in chlorophylls compared to the stem of the parasitic plant. In the present study, we aimed to characterize the photosynthetic activity in the inner and outer gall cortices in comparison to the non-photosynthetic stems and a reference plant (Arabidopsis thaliana). The recorded prompt chlorophyll fluorescence transients were analyzed using JIP test. Detailed analysis of the chlorophyll fluorescence confirmed the presence of actively functioning photosynthetic machinery, especially in the inner cortex of the galls. This photosynthesis, induced by the insect larvae, did not reach the levels of the photosynthetic activity in Arabidopsis thaliana plants. Thylakoid protein complexes were identified by separation with two-dimensional Blue Native/SDS PAGE. It appeared that some of the complexes presented in A. thaliana are missing in C. campestris. We hypothesize that the insect-triggered transition from non-photosynthetic to photosynthetic tissue in the gall is driven by the increased requirements for nutrients related to the larval nutrition.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 738
Author(s):  
Eva María Córdoba ◽  
Mónica Fernández-Aparicio ◽  
Clara Isabel González-Verdejo ◽  
Carmela López-Grau ◽  
María del Valle Muñoz-Muñoz ◽  
...  

The dodders (Cuscuta spp.) are parasitic plants that feed on the stems of their host plants. Cuscuta campestris is one of the most damaging parasitic plants for the worldwide agricultural production of broad-leaved crops. Its control is limited or non-existent, therefore resistance breeding is the best alternative both economically and environmentally. Common vetch (Vicia sativa) and bitter vetch (Vicia ervilia) are highly susceptible to C. campestris, but no resistant genotypes have been identified. Thus, the aim of this study was to identify in V. sativa and V.ervilia germplasm collections genotypes resistant to C. campestris infection for use in combating this parasitic plant. Three greenhouse screening were conducted to: (1) identify resistant responses in a collection of 154 accessions of bitter vetch and a collection of 135 accessions of common vetch genotypes against infection of C. campestris; (2) confirm the resistant response identified in common vetch accessions; and (3) characterize the effect of C. campestris infection on biomass of V. sativa resistant and susceptible accessions. Most common vetch and bitter vetch genotypes tested were susceptible to C. campestris. However, the V. sativa genotype Vs.1 exhibited high resistance. The resistant phenotype was characterized by a delay in the development of C. campestris posthaustorial growth and a darkening resembling a hypersensitive-like response at the penetration site. The resistant mechanism was effective in limiting the growth of C. campestris as the ratio of parasite/host shoot dry biomass was more significantly reduced than the rest of the accessions. To the best or our knowledge, this is the first identification of Cuscuta resistance in V. sativa genotypes.


1984 ◽  
Vol 116 (9) ◽  
pp. 1277-1279 ◽  
Author(s):  
Arthur E. Weis

Plant galls are growth deformities developed under the influence of parasitic insects. The process of differentiation of normal plant tissue into gall tissue has been examined by many authors (Kostoff and Kendall 1929; Rohfristch 1977; see also Mani 1964) but less effort has been made to study the effects of the gallmaker on plant tissues outside the vicinity of active gall formation. Negative effects on the overall growth of the host plant can be expected because the gall acts as an energy and nutrient sink (Palct 1972; Hartnett and Abrahamson 1979), which can cause abnormal patterns of resource allocation among plant organs.


2016 ◽  
Vol 172 (1) ◽  
pp. 181-197 ◽  
Author(s):  
Jason D. Smith ◽  
Melkamu G. Woldemariam ◽  
Mark C. Mescher ◽  
Georg Jander ◽  
Consuelo M. De Moraes

2006 ◽  
Vol 143 (2) ◽  
pp. 1037-1043 ◽  
Author(s):  
Jeannine K. Roney ◽  
Piyum A. Khatibi ◽  
James H. Westwood

2017 ◽  
Author(s):  
Saima Shahid ◽  
Gunjune Kim ◽  
Nathan R. Johnson ◽  
Eric Wafula ◽  
Feng Wang ◽  
...  

First paragraphDodders (Cuscuta spp.) are obligate parasitic plants that obtain water and nutrients from the stems of host plants via specialized feeding structures called haustoria. Dodder haustoria facilitate bi-directional movement of viruses, proteins, and mRNAs between host and parasite1, but the functional effects of these movements are not clear. Here we show that C. campestris haustoria accumulate high levels of many novel microRNAs (miRNAs) while parasitizing Arabidopsis thaliana hosts. Many of these miRNAs are 22 nts long, a usually rare size of plant miRNA associated with amplification of target silencing through secondary small interfering RNA (siRNA) production2. Several A. thaliana mRNAs are targeted by C. campestris 22 nt miRNAs during parasitism, resulting in mRNA cleavage, secondary siRNA production, and decreased mRNA accumulation levels. Hosts with mutations in two of the targets supported significantly higher growth of C. campestris. Homologs of target mRNAs from diverse plants also have predicted target sites to induced C. campestris miRNAs, and the same miRNAs are expressed and active against host targets when C. campestris parasitizes a different host, Nicotiana benthamiana. These data show that C. campestris miRNAs act as trans-species regulators of host gene expression, and suggest that they may act as virulence factors during parasitism.


2021 ◽  
Author(s):  
Godswill Ajuziogu ◽  
G C Agbo ◽  
Reginald Njokuocha ◽  
Anthony Nweze ◽  
Eugene O Ojua ◽  
...  

Abstract Background: This study aims at evaluating the phytochemicals composition at the host-parasite interfaces of parasitic plant Tapinanthus globiferus (mistletoe) and four host plants. Wood tissues of the hosts and the parasite at the host-parasite interface were collected and analyzed to determine the presence secondary metabolites. Results: The result showed that flavonoids, saponins, and glycosides were present in the plants and parasite samples. The results revealed higher concentration of flavonoids (P < 0.05) in the parasite of C. acuminata (1190.33 ± 48.23 mgQE/g) and P. macrophylla (1482.55 ± 31.35 mgQE/g) than in the host plant. Saponins was significantly (P < 0.05) higher in the parasites as compared to their respective host. Conclusion: At the host-parasite interface, significantly higher phytochemicals in the wood portion of T. globiferus was observed as compared to the host plants wood; however, the variability in phytochemical content of T. globiferus is dependent on the host. Therefore, milestoe would be a better source of bioactive compounds with high medicinal values than their host plants if explored further.


Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 16
Author(s):  
Irina Vasylyk ◽  
Svetlana Gorislavets ◽  
Elena Matveikina ◽  
Ekaterina Lushchay ◽  
Kirill Lytkin ◽  
...  

Leaf-feeding phylloxera decreases the photosynthetic activity of a grape plant, leading to decreasing number of fruit buds. In addition, phylloxera larvae emerging from the leaf galls may colonize the roots, negatively affecting the growth of the grape plant. In this study, we evaluated host tolerance of three grapevine hybrid populations obtained from crossing of the same maternal grapevine M. no. 31-77-10 with interspecific hybrids carrying introgressions from Muscadinia and other North American Vitis species against leaf-feeding grape phylloxera. Combining genotyping data of the populations obtained with 12,734 SNPs and their resistance phenotypes evaluated in the laboratory experiment, we performed an association study. As the result of GWAS, nine SNPs with the lowest significant p-values were discovered in the whole sample of 139 hybrids as associated with variation of the scores ‘the percentage of infested leaves’ and ‘intensity of gall formation’. Three of the SNPs on LG 7 were located in the same chromosome interval where a major QTL (RDV6) for root phylloxera resistance was reported from Muscadine background. Two SNPs on LG 8 were detected within the gene, encoding E3 ubiquitin-protein ligase UPL4 involved in apoptosis. SNPs detected on LG 13 and LG 18 may overlap with the previously reported QTLs for phylloxera resistance inherited from V. cinerea.


Sign in / Sign up

Export Citation Format

Share Document