scholarly journals Calcium silicate-based cements cause environmental stiffness and show diverse potential to induce osteogenesis in human osteoblastic cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcos Coelho Santiago ◽  
Ana Lívia Gomes-Cornélio ◽  
Laudimar Alves de Oliveira ◽  
Mario Tanomaru-Filho ◽  
Loise Pedrosa Salles

AbstractCalcium silicate-based cements differ markedly in their radiopacifiers and the presence of calcium sulfate, aluminates, carbonates and other components that can affect their biological properties. This study aimed to compare the biological properties of six calcium silicate cements in human osteoblastic cell culture (Saos-2 cells): Bio-C Repair (Bio-C), PBS HP (PBS-HP), Biodentine (Biodentine), MTA Repair HP (MTA-HP), NeoMTA Plus (NeoMTA-P), and ProRoot MTA (ProRoot). After exposure to these materials, the cells were analyzed by MTT, wound healing, cell migration, and alkaline phosphatase activity (ALP) assays, real-time PCR (qPCR) analysis of the osteogenesis markers (osteocalcin or bone gamma-carboxyglutamate protein, BGLAP; alkaline phosphatase, ALPL; bone sialoprotein or secreted phosphoprotein 1, BNSP), and alizarin red staining (ARS). Curiously, the migration rates were low 24–48 h after exposure to the materials, despite the cells showing ideal rates of viability. The advanced and intermediate cell differentiation markers BGLAP and BNSP were overexpressed in the Bio-C, MTA-HP, and ProRoot groups. Only the Biodentine group showed ALPL overexpression, a marker of initial differentiation. However, the enzymatic activity was high in all groups except Biodentine. The mineralization area was significantly large in the NeoMTA-P, ProRoot, PBS-HP, MTA-HP, and Bio-C groups. The results showed that cellular environmental stiffness, which impairs cell mobility and diverse patterns of osteogenesis marker expression, is a consequence of cement exposure. Environmental stiffness indicates chemical and physical stimuli in the microenvironment; for instance, the release of cement compounds contributes to calcium phosphate matrix formation with diverse stiffnesses, which could be essential or detrimental for the migration and differentiation of osteoblastic cells. Cells exposed to Bio-C, PBS-HP, ProRoot, NeoMTA-P, and MTA-HP seemed to enter the advanced or intermediate differentiation phases early, which is indicative of the diverse potential of cements to induce osteogenesis. Cements that quickly stimulate osteoblast differentiation may be ideal for reparative and regenerative purposes since they promptly lead to dentin or bone deposition.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1579-1579
Author(s):  
Chunkang Chang ◽  
Chengming Fei ◽  
Youshan Zhao ◽  
Juan Guo ◽  
Xiao Li

Abstract Background The pathogenesis of MDS has not been completely understood, and insufficiency of the hematopoietic microenvironment can be an important factor. MSCs and osteoblasts are key components of the hematopoietic microenvironment. Studying osteoblastic differentiation of MSCs quantitatively may help to understand the pathogenesis of MDS. Methods 38 patients with MDS and 15 normal donors were investigated in this study. Osteoblastic differentiation assays were performed in 16 MDS cases and 8 controls. The expression of osteogenic differentiation markers were measured by real-time PCR. Alkaline phosphatase staining was performed with Alkaline Phosphatase staining kit after 3,7,14 days of incubation. ALP activity was assessed at 3, 7, and 10 days after osteogenic differentiation. Mineralization analysis was performed at 7, 14 and 21 days of osteogenic induction. The areas of mineralization were measured by Image-Pro Plus 6.0 software. Results Both MDS-MSCs and normal cells displayed same fibroblast-like morphology and similar antigen expression. The expression level of RUNX2 was significantly decreased in MSCs from MDS, compaired with normal controls, especially in lower-risk MDS. After osteogenic induction, lower-risk MDS showed lower alkaline phosphatase activity, less intense alizarin red S staining, and lower gene expression of osteogenic differentiation markers, however, higher-risk MDS was normal. Conclusions We concluded that impaired osteogenic differentiation of MSCs was seen mainly in patients with lower-risk MDS. It may contribute to the ineffective hamatopoiesis of MDS. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 29 (5) ◽  
pp. 452-458 ◽  
Author(s):  
Bernardo Cesar Costa ◽  
Juliane Maria Guerreiro-Tanomaru ◽  
Roberta Bosso-Martelo ◽  
Elisandra Márcia Rodrigues ◽  
Idomeo Bonetti-Filho ◽  
...  

Abstract This study evaluated physicochemical properties, cytotoxicity and bioactivity of MTA Angelus (MTA), calcium silicate-based cement (CSC) and CSC with 30% Ytterbium oxide (CSC/Yb2O3). Setting time was evaluated using Gilmore needles. Compressive strength was evaluated in a mechanical machine. Radiopacity was evaluated using radiographs of materials and an aluminum scale. Solubility was evaluated after immersion in water. Cell viability was evaluated by means of MTT assay and neutral red staining, and the mineralization activity by using alkaline phosphatase activity and Alizarin Red staining. The data were submitted to ANOVA, Tukey and Bonferroni tests (5% significance). The bioactive potential was evaluated by scanning electron microscopy. The materials presented similar setting time. MTA showed the lowest compressive strength. MTA and CSC/Yb2O3 presented similar radiopacity. CSC/Yb2O3 showed low solubility. Saos-2 cell viability tests showed no cytotoxic effect, except to 1:1 dilution in NR assay which had lower cell viability when compared to the control. ALP at 1 and 7 days was similar to the control. MTA and CSC had greater ALP activity at 3 days when compared to control. All the materials present higher mineralized nodules when compared with the control. SEM analysis showed structures suggesting the presence of calcium phosphate on the surface of materials demonstrating bioactivity. Ytterbium oxide proved to be a properly radiopacifying agent for calcium silicate-based cement since it did not affected the physicochemical and biological properties besides preserving the bioactive potential of this material.


2020 ◽  
Author(s):  
Xining Li ◽  
Xi-Ning Li ◽  
Yu Zhao ◽  
Zhi-Gang Zhou ◽  
Hong-Chang Zhou ◽  
...  

Abstract Background: OP(Osteoporosis) is a common bone metabolic disorder in the elderly characterized by loss of bone mass and a tendency to fracture. The mammalian target of rapamycin (mTOR) pathway in autophagy plays an indispensable role in maintaining the stability of the intracellular environment and ensuring the normal physiological functions of cells. Methods: In this study, different concentrations(20, 40, 60, 80, 100, 120, 140, 160, 180 and 200nM) of rapamycin were used to act on MC3T3-E1 osteoblasts for different time lengths(6, 12, 24, 36 and 48 hours). CCK8 was used to detect the proliferative activity of cells and screen suitable rapamycin concentration for subsequent experiments. Western blot and real-time quantitative PCR were used to detect the expression changes of phosphorylated mTOR, upstream and downstream mTOR pathway, autophagy and osteogenic differentiation markers. The expression of LC3 was observed by immunofluorescence. The differentiation ability of osteoblasts was observed by alizarin red and alkaline phosphatase staining.Results: The results showed that the induction of proliferation activity of osteoblasts from 20 nM to 200 nM presented a parabolic feature. After the action time of 50 μM rapamycin exceeded 12 hours, the proportion of S stage cells was significantly increased. The results of gene and protein analysis showed that rapamycin significantly inhibited the phosphorylation of mTOR, and the phosphorylation of the downstream factors of mTOR, 4E-BP1(eIF4E-binding protein 1) and S6K1(p70 ribosomal S6 kinase 1) also decreased. Rapamycin significantly increased the expression of LC3 II (microtubule associated protein 1 light chain 3-α), significantly increased the ratio of LC3II/LC3I, and significantly decreased the expression of p62(sequestosome-1). Rapamycin significantly induced the expression of ALP(Alkaline phosphatase), Runx2(Runt-related transcription factor 2) and osterix. Conclusions: This study confirmed that rapamycin stimulates the autophagy of osteoblasts by inhibiting mTOR and promotes their proliferation and differentiation, suggesting that mTOR may be a potential therapeutic target for osteoporosis.


2021 ◽  
Vol 9 (4) ◽  
pp. 673
Author(s):  
Jiah Yeom ◽  
Seongho Ma ◽  
Young-Hee Lim

Osteoblast differentiation is important for the development of bone and the maintenance of bone density. Propionibacterium freudenreichii is a probiotic with an anti-inflammatory property. The aim of this study was to investigate the enhancement effect of P. freudenreichii MJ2 (MJ2) isolated from raw milk on osteoblast differentiation, mineralization, and its signaling pathway. For in vitro and in vivo experiments, human fetal osteoblastic cell line hFOB 1.19 and an ovariectomized rat model were used, respectively. Expression levels of genes and proteins related to osteoblast differentiation and mineralization were measured by real-time polymerase chain reaction (qPCR) and Western blotting, respectively. Alizarin red S staining was performed to measure osteoblast mineralization. Heat-killed MJ2 (hkMJ2)-treated cells showed significantly increased osteoblast differentiation via an increase in the osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL) ratio and significantly increased osteoblast mineralization by stimulating the expression of bone morphogenetic protein 2 and runt-related transcription factor 2. Additionally, oral administration of live or heat-killed MJ2 to ovariectomized rats inhibited osteoporosis-induced bone loss. Specifically, surface proteins isolated from MJ2 promoted osteoblast differentiation and mineralization. In conclusion, MJ2 enhanced osteoblast differentiation and mineralization through the OPG/RANKL signaling pathway and the effective component of MJ2 might be its surface proteins.


Author(s):  
Kari Hanson ◽  
Carly Isder ◽  
Kristen Shogren ◽  
Anthony L. Mikula ◽  
Lichun Lu ◽  
...  

OBJECTIVE The use of intrawound vancomycin powder in spine surgery has been shown to decrease the rate of surgical site infections; however, the optimal dose is unknown. High-dose vancomycin inhibits osteoblast proliferation in vitro and may decrease the rate of solid arthrodesis. Bone marrow–derived mesenchymal stem cells (BMSCs) are multipotent cells that are a source of osteogenesis in spine fusions. The purpose of this study was to determine the effects of vancomycin on rat BMSC viability and differentiation in vitro. METHODS BMSCs were isolated from the femurs of immature female rats, cultured, and then split into two equal groups; half were treated to stimulate osteoblastic differentiation and half were not. Osteogenesis was stimulated by the addition of 50 µg/mL l-ascorbic acid, 10 mM β-glycerol phosphate, and 0.1 µM dexamethasone. Vancomycin was added to cell culture medium at concentrations of 0, 0.04, 0.4, or 4 mg/mL. Early differentiation was determined by alkaline phosphatase activity (4 days posttreatment) and late differentiation by alizarin red staining for mineralization (9 days posttreatment). Cell viability was determined at both the early and late time points by measurement of formazan colorimetric product. RESULTS Viability within the first 4 days decreased with high-dose vancomycin treatment, with cells receiving 4 mg/mL vancomycin having 40%–60% viability compared to the control. A gradual decrease in alizarin red staining and nodule formation was observed with increasing vancomycin doses. In the presence of the osteogenic factors, vancomycin did not have deleterious effects on alkaline phosphatase activity, whereas a trend toward reduced activity was seen in the absence of osteogenic factors when compared to osteogenically treated cells. CONCLUSIONS Vancomycin reduced BMSC viability and impaired late osteogenic differentiation with high-dose treatment. Therefore, the inhibitory effects of high-dose vancomycin on spinal fusion may result from both reduced BMSC viability and some impairment of osteogenic differentiation.


2002 ◽  
Vol 88 (3) ◽  
pp. 262-269 ◽  
Author(s):  
Yuki Sugawara ◽  
Kuniaki Suzuki ◽  
Mino Koshikawa ◽  
Masaki Ando ◽  
Junichiro Iida

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Tingting Meng ◽  
Ying Zhou ◽  
Jingkun Li ◽  
Meilin Hu ◽  
Xiaomeng Li ◽  
...  

Background and Objective. This study investigated the effects and underlying mechanisms of azithromycin (AZM) treatment on the osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) after their stimulation with TNF-α in vitro. Methods. PDLSCs were isolated from periodontal ligaments from extracted teeth, and MTS assay was used to evaluate whether AZM and TNF-α had toxic effects on PDLSCs viability and proliferation. After stimulating PDLSCs with TNF-α and AZM, we analyzed alkaline phosphatase staining, alkaline phosphatase activity, and alizarin red staining to detect osteogenic differentiation. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis was performed to detect the mRNA expression of osteogenic-related genes, including RUNX2, OCN, and BSP. Western blotting was used to measure the NF-κB signaling pathway proteins p65, phosphorylated p65, IκB-α, phosphorylated IκB-α, and β-catenin as well as the apoptosis-related proteins caspase-8 and caspase-3. Annexin V assay was used to detect PDLSCs apoptosis. Results. TNF-α stimulation of PDLSCs decreased alkaline phosphatase and alizarin red staining, alkaline phosphatase activity, and mRNA expression of RUNX2, OCN, and BSP in osteogenic-conditioned medium. AZM enhanced the osteogenic differentiation of PDLSCs that were stimulated with TNF-α. Western blot analysis showed that β-catenin, phosphorated p65, and phosphorylated IκB-α protein expression decreased in PDLSCs treated with AZM. In addition, pretreatment of PDLSCs with AZM (10 μg/ml, 20 μg/ml) prevented TNF-α-induced apoptosis by decreasing caspase-8 and caspase-3 expression. Conclusions. Our results showed that AZM promotes PDLSCs osteogenic differentiation in an inflammatory microenvironment by inhibiting the WNT and NF-κB signaling pathways and by suppressing TNF-α-induced apoptosis. This suggests that AZM has potential as a clinical therapeutic for periodontitis.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4661
Author(s):  
Yemi Kim ◽  
Donghee Lee ◽  
Hye-Min Kim ◽  
Minjoo Kye ◽  
Sin-Young Kim

We compared calcium silicate-based pulp capping materials to conventional calcium hydroxide in terms of their biological properties and potential effects on odontogenic differentiation in human dental pulp stem cells (hDPSCs). We cultured hDPSCs on disks (7-mm diameter, 4-mm high) of ProRoot MTA (Dentsply Tulsa Dental Specialties), Biodentine (Septodont), TheraCal LC (Bisco), or Dycal (Dentsply Tulsa Dental Specialties). Cell viability was assessed with cell counting (CCK) and scanning electron microscopy (SEM). Odontogenic activity was assessed by measuring alkaline phosphatase (ALP) activity and gene expression (quantitative real-time PCR). CCK assays showed that Dycal reduced cell viability compared to the other materials (p < 0.05). SEM showed low and absent cell attachment on TheraCal LC and Dycal disks, respectively. hDPSCs exposed to TheraCal LC and Dycal showed higher ALP activity on day 6 than the control group (p < 0.05). The day-9 Runx2 expression was higher in the ProRoot MTA and TheraCal LC groups than in the control group (p < 0.05). On day 14, the ProRoot MTA group showed the highest dentin sialophosphoprotein levels (not significant; p > 0.05). In conclusion, various pulp capping materials, except Dycal, exhibited biological properties favorable to hDPSC viability. ProRoot MTA and TheraCal LC promoted higher Runx2 expression than Biodentine. Future studies should explore the odontogenic potential of pulp capping materials.


2001 ◽  
Vol 37 (1) ◽  
pp. 30-37 ◽  
Author(s):  
M. Carmen Sánchez ◽  
M. Auxiliadora Bajo ◽  
Rafael Selgas ◽  
Alberto Mate ◽  
M. Jesús Sánchez-Cabezudo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document