scholarly journals Reduced B7-H3 expression by PAX3-FOXO1 knockdown inhibits cellular motility and promotes myogenic differentiation in alveolar rhabdomyosarcoma

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takuyo Kanayama ◽  
Mitsuru Miyachi ◽  
Yohei Sugimoto ◽  
Shigeki Yagyu ◽  
Ken Kikuchi ◽  
...  

AbstractB7-H3 (also known as CD276) is associated with aggressive characteristics in various cancers. Meanwhile, in alveolar rhabdomyosarcoma (ARMS), PAX3-FOXO1 fusion protein is associated with increased aggressiveness and poor prognosis. In the present study, we explored the relationship between PAX3-FOXO1 and B7-H3 and the biological roles of B7-H3 in ARMS. Quantitative real time PCR and flow cytometry revealed that PAX3-FOXO1 knockdown downregulated B7-H3 expression in all the selected cell lines (Rh-30, Rh-41, and Rh-28), suggesting that PAX3-FOXO1 positively regulates B7-H3 expression. Gene expression analysis revealed that various genes and pathways involved in chemotaxis, INF-γ production, and myogenic differentiation were commonly affected by the knockdown of PAX3-FOXO1 and B7-H3. Wound healing and transwell migration assays revealed that both PAX3-FOXO1 and B7-H3 were associated with cell migration. Furthermore, knockdown of PAX3-FOXO1 or B7-H3 induced myogenin expression in all cell lines, although myosin heavy chain induction varied depending on the cellular context. Our results indicate that PAX3-FOXO1 regulates B7-H3 expression and that PAX3-FOXO1 and B7-H3 are commonly associated with multiple pathways related to an aggressive phenotype in ARMS, such as cell migration and myogenic differentiation block.

1994 ◽  
Vol 267 (3) ◽  
pp. C706-C714 ◽  
Author(s):  
S. A. McCormack ◽  
J. Y. Wang ◽  
M. J. Viar ◽  
L. Tague ◽  
P. J. Davies ◽  
...  

Transglutaminases (TGAs) catalyze the cross-linking of proteins through formation of gamma-glutaminyl-epsilon-lysine bonds and incorporation of small-molecular-weight amines, including polyamines, into the gamma-glutamine sites of proteins. Tissue TGA has been shown to establish covalent cross-links between cytoskeletal proteins using polyamines as substrates, and protein-polyamine conjugates have been identified in a variety of cells. We have shown previously that polyamines are required for cell migration in IEC-6 cells [S. A. McCormack, M. J. Viar, and L. R. Johnson. Am. J. Physiol. 264 (Gastrointest. Liver Physiol. 27): G367-G374, 1993]. In this study, we explored the relationship between cell migration, polyamines, and tissue TGA activity in two cell lines and found that while both IEC-6 and Caco-2 cells required normal levels of polyamines to migrate across a denuded surface, tissue TGA activity responded differently to polyamine deficiency brought about by treatment with alpha-difluoromethylornithine (DFMO). DFMO is a specific and irreversible inhibitor of ornithine decarboxylase, a rate-limiting enzyme of polyamine biosynthesis. In IEC-6 cells, tissue TGA activity decreased significantly with DFMO treatment concurrent with a rise in inactive TGA protein as measured by Western blot analysis. On the other hand, in Caco-2 cells, tissue TGA activity and protein increased significantly with DFMO treatment. In both cell lines, addition of polyamines to the DFMO treatment restored cell migration, tissue TGA activity, and protein to control levels.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
Chen-Long Wang ◽  
Jing-Chi Li ◽  
Ci-Xiang Zhou ◽  
Cheng-Ning Ma ◽  
Di-Fei Wang ◽  
...  

Abstract Purpose Tumor metastasis is the main cause of death from breast cancer patients and cell migration plays a critical role in cancer metastasis. Recent studies have shown long non-coding RNAs (lncRNAs) play an essential role in the initiation and progression of cancer. In the present study, the role of an LncRNA, Rho GTPase Activating Protein 5- Antisense 1 (ARHGAP5-AS1) in breast cancer was investigated. Methods RNA sequencing was performed to find out dysregulated LncRNAs in MDA-MB-231-LM2 cells. Transwell migration assays and F-actin staining were utilized to estimate cell migration ability. RNA pulldown assays and RNA immunoprecipitation were used to prove the interaction between ARHGAP5-AS1 and SMAD7. Western blot and immunofluorescence imaging were used to examine the protein levels. Dual luciferase reporter assays were performed to evaluate the activation of TGF-β signaling. Results We analyzed the RNA-seq data of MDA-MB-231 and its highly metastatic derivative MDA-MB-231-LM2 cell lines (referred to as LM2) and identified a novel lncRNA (NR_027263) named as ARHGAP5-AS1, which expression was significantly downregulated in LM2 cells. Further functional investigation showed ARHGAP5-AS1 could inhibit cell migration via suppression of stress fibers in breast cancer cell lines. Afterwards, SMAD7 was further identified to interact with ARHGAP5-AS1 by its PY motif and thus its ubiquitination and degradation was blocked due to reduced interaction with E3 ligase SMURF1 and SMURF2. Moreover, ARHGAP5-AS1 could inhibit TGF-β signaling pathway due to its inhibitory role on SMAD7. Conclusion ARHGAP5-AS1 inhibits breast cancer cell migration via stabilization of SMAD7 protein and could serve as a novel biomarker and a potential target for breast cancer in the future.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 465
Author(s):  
Omer Anis ◽  
Ajjampura C. Vinayaka ◽  
Nurit Shalev ◽  
Dvora Namdar ◽  
Stalin Nadarajan ◽  
...  

Cannabis sativa contains more than 500 constituents, yet the anticancer properties of the vast majority of cannabis compounds remains unknown. We aimed to identify cannabis compounds and their combinations presenting cytotoxicity against bladder urothelial carcinoma (UC), the most common urinary system cancer. An XTT assay was used to determine cytotoxic activity of C. sativa extracts on T24 and HBT-9 cell lines. Extract chemical content was identified by high-performance liquid chromatography (HPLC). Fluorescence-activated cell sorting (FACS) was used to determine apoptosis and cell cycle, using stained F-actin and nuclei. Scratch and transwell assays were used to determine cell migration and invasion, respectively. Gene expression was determined by quantitative Polymerase chain reaction (PCR). The most active decarboxylated extract fraction (F7) of high-cannabidiol (CBD) C. sativa was found to contain cannabichromene (CBC) and Δ9-tetrahydrocannabinol (THC). Synergistic interaction was demonstrated between CBC + THC whereas cannabinoid receptor (CB) type 1 and type 2 inverse agonists reduced cytotoxic activity. Treatments with CBC + THC or CBD led to cell cycle arrest and cell apoptosis. CBC + THC or CBD treatments inhibited cell migration and affected F-actin integrity. Identification of active plant ingredients (API) from cannabis that induce apoptosis and affect cell migration in UC cell lines forms a basis for pre-clinical trials for UC treatment.


2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110059
Author(s):  
Fangfang Yong ◽  
Hemei Wang ◽  
Chao Li ◽  
Huiqun Jia

Objective Previous studies suggested that sevoflurane exerts anti-proliferative, anti-migratory, and anti-invasive effects on cancer cells. To determine the role of sevoflurane on gastric cancer (GC) progression, we evaluated its effects on the proliferation, migration, and invasion of SGC7901, AGS, and MGC803 GC cells. Methods GC cells were exposed to different concentrations of sevoflurane (1.7, 3.4, or 5.1% v/v). Cell viability, migration, and invasion were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell assays. Immunohistochemical staining and immunoblotting were performed to analyze forkhead box protein 3 (FOXP3) protein expression in tissue specimens and cell lines, respectively. Results FOXP3 was downregulated in human GC specimens and cell lines. Functionally, FOXP3 overexpression significantly inhibited the proliferation, migration, and invasion of GC cells and accelerated their apoptosis. Moreover, sevoflurane significantly blocked GC cell migration and invasion compared with the findings in the control group. However, FOXP3 silencing neutralized sevoflurane-induced apoptosis and the inhibition of GC cell migration and invasion. Sevoflurane-induced apoptosis and the suppression of migration and invasion might be associated with FOXP3 overactivation in GC cells. Conclusions Sevoflurane activated FOXP3 and prevented GC progression via inhibiting cell migration and invasion in vitro.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Pradip Shahi Thakuri ◽  
Megha Gupta ◽  
Sunil Singh ◽  
Ramila Joshi ◽  
Eric Glasgow ◽  
...  

Abstract Background Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and treatment-induced adaptation to drugs commonly enable subsets of cancer cells to survive therapy. In addition to local recurrence, these cells escape a primary tumor and migrate through the stroma to access the circulation and metastasize to different organs, leading to an incurable disease. As such, therapeutics that block migration and invasion of cancer cells may inhibit or reduce metastasis and significantly improve cancer therapy. This is particularly more important for cancers, such as triple negative breast cancer, that currently lack targeted drugs. Methods We used cell migration, 3D invasion, zebrafish metastasis model, and phosphorylation analysis of 43 protein kinases in nine triple negative breast cancer (TNBC) cell lines to study effects of fisetin and quercetin on inhibition of TNBC cell migration, invasion, and metastasis. Results Fisetin and quercetin were highly effective against migration of all nine TNBC cell lines with up to 76 and 74% inhibitory effects, respectively. In addition, treatments significantly reduced 3D invasion of highly motile TNBC cells from spheroids into a collagen matrix and their metastasis in vivo. Fisetin and quercetin commonly targeted different components and substrates of the oncogenic PI3K/AKT pathway and significantly reduced their activities. Additionally, both compounds disrupted activities of several protein kinases in MAPK and STAT pathways. We used molecular inhibitors specific to these signaling proteins to establish the migration-inhibitory role of the two phytochemicals against TNBC cells. Conclusions We established that fisetin and quercetin potently inhibit migration of metastatic TNBC cells by interfering with activities of oncogenic protein kinases in multiple pathways.


Cell Cycle ◽  
2012 ◽  
Vol 11 (5) ◽  
pp. 895-908 ◽  
Author(s):  
Mathivanan Jothi ◽  
Kochi Nishijo ◽  
Charles Keller ◽  
Asoke K. Mal

1983 ◽  
Vol 59 (1) ◽  
pp. 43-60 ◽  
Author(s):  
N. Nakatsuji ◽  
K.E. Johnson

We have found that ectodermal fragments of Ambystoma maculatum gastrulae deposit immense numbers of 0.1 micron diameter extracellular fibrils on plastic coverslips. When migrating mesodermal cells from A. maculatum gastrulae are seeded on such conditioned plastic substrata, they attach and begin migrating after 15–30 min in vitro. We did a detailed analysis of the relationship between fibril orientation and cell migration using time-lapse cinemicrography, scanning electron microscopy, and a microcomputer with a graphics tablet and morphometric program. We found that cells move in directions closely related to the orientation of fibrils. Usually fibrils are oriented in dense arrays with a predominance of fibrils running parallel to the blastopore-animal pole axis of the explant, and cells move preferentially along lines parallel to the blastopore-animal pole axis. When fibrils are unaligned, cells move at random. We have also shown that cells move with a slightly stronger tendency towards the animal pole direction. These results are discussed concerning the mechanism of specific cell migration during amphibian gastrulation.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Shu Wan ◽  
Juanjuan Jiang ◽  
Chuanming Zheng ◽  
Ning Wang ◽  
Xia Zhai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document