scholarly journals Sperm modulate uterine immune parameters relevant to embryo implantation and reproductive success in mice

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
John E. Schjenken ◽  
David J. Sharkey ◽  
Ella S. Green ◽  
Hon Yeung Chan ◽  
Ricky A. Matias ◽  
...  

AbstractSeminal fluid factors modulate the female immune response at conception to facilitate embryo implantation and reproductive success. Whether sperm affect this response has not been clear. We evaluated global gene expression by microarray in the mouse uterus after mating with intact or vasectomized males. Intact males induced greater changes in gene transcription, prominently affecting pro-inflammatory cytokine and immune regulatory genes, with TLR4 signaling identified as a top-ranked upstream driver. Recruitment of neutrophils and expansion of peripheral regulatory T cells were elevated by seminal fluid of intact males. In vitro, epididymal sperm induced IL6, CXCL2, and CSF3 in uterine epithelial cells of wild-type, but not Tlr4 null females. Collectively these experiments show that sperm assist in promoting female immune tolerance by eliciting uterine cytokine expression through TLR4-dependent signaling. The findings indicate a biological role for sperm beyond oocyte fertilization, in modulating immune mechanisms involved in female control of reproductive investment.

Reproduction ◽  
2021 ◽  
Author(s):  
Ran Li ◽  
Xiao-Tong Song ◽  
Si-Wei Guo ◽  
Na Zhao ◽  
Mei He ◽  
...  

As a multifunctional transcription factor, YY1 regulates the expression of many genes essential for early embryonic development. RTCB is an RNA ligase that plays a role in tRNA maturation and Xbp1 mRNA splicing. YY1 can bind in vitro to the response element in the proximal promoter of Rtcb and regulate Rtcb promoter activity. However, the in vivo regulation and whether these two genes are involved in the mother-fetal dialogue during early pregnancy remain unclear. In this study, we validated that YY1 bound in vivo to the proximal promoter of Rtcb in mouse uterus of early pregnancy. Moreover, via building a variety of animal models, our study suggested that both YY1 and RTCB might play a role in mouse uterus decidualization and embryo implantation during early pregnancy.


2017 ◽  
Vol 234 (3) ◽  
pp. 247-254 ◽  
Author(s):  
Jie Liu ◽  
Fei Gao ◽  
Yue-Fang Liu ◽  
Hai-Ting Dou ◽  
Jia-Qi Yan ◽  
...  

Embryo implantation and decidualization are key steps for successful reproduction. Although numerous factors have been identified to be involved in embryo implantation and decidualization, the mechanisms underlying these processes are still unclear. Based on our preliminary data, Prss56, a trypsin-like serine protease, is strongly expressed at implantation site in mouse uterus. However, the expression, regulation and function of Prss56 during early pregnancy are still unknown. In mouse uterus, Prss56 is strongly expressed in the subluminal stromal cells at implantation site on day 5 of pregnancy compared to inter-implantation site. Under delayed implantation, Prss56 expression is undetected. After delayed implantation is activated by estrogen, Prss56 is obviously induced at implantation site. Under artificial decidualization, Prss56 signal is seen at the primary decidual zone at the initial stage of artificial decidualization. When stromal cells are induced for in vitro decidualization, Prss56 expression is significantly elevated. Dtprp expression under in vitro decidualization is suppressed by Prss56 siRNA. In cultured stromal cells, HB-EGF markedly stimulates Prss56 expression through EGFR/ERK pathway. Based on promoter analysis, we also showed that Egr2 is involved in Prss56 regulation by HB-EGF. Collectively, Prss56 expression at implantation site is modulated by HB-EGF/EGFR/ERK signaling pathway and involved in mouse decidualization.


Endocrinology ◽  
2010 ◽  
Vol 151 (10) ◽  
pp. 5007-5016 ◽  
Author(s):  
Xiao-Huan Liang ◽  
Zhen-Ao Zhao ◽  
Wen-Bo Deng ◽  
Zhen Tian ◽  
Wei Lei ◽  
...  

Embryo implantation is an intricate interaction between receptive uterus and active blastocyst. The mechanism underlying embryo implantation is still unknown. Although histamine and putrescine are important for embryo implantation and decidualization, excess amount of histamine and putrescine is harmful. Amiloride binding protein 1 (Abp1) is a membrane-associated amine oxidase and mainly metabolizes histamine and putrescine. In this study, we first showed that Abp1 is strongly expressed in the decidua on d 5–8 of pregnancy. Abp1 expression is not detected during pseudopregnancy and under delayed implantation but is detected after estrogen activation. Because Abp1 is mainly localized in the decidua and also strongly expressed during in vitro decidualization, Abp1 might play a role during mouse decidualization. The regulation of estrogen on Abp1 is mediated by transcription factor CCAAT/enhancer-binding protein-β. Abp1 expression is also regulated by cAMP, bone morphogenetic protein 2, and ERK1/2. Abp1 may be essential for mouse embryo implantation and decidualization.


Reproduction ◽  
2013 ◽  
Vol 145 (6) ◽  
pp. 577-585 ◽  
Author(s):  
Xue-Chao Tian ◽  
Qu-Yuan Wang ◽  
Dang-Dang Li ◽  
Shou-Tang Wang ◽  
Zhan-Qing Yang ◽  
...  

The aim of this study was to examine the expression and regulation of the crystallin, alpha B (Cryab) gene in mouse uterus during the peri-implantation period by in situ hybridization and real-time PCR. There was no detectable Cryab mRNA signal on days 1–4 of pregnancy. On day 5 of pregnancy when embryo implanted, a high level of Cryab mRNA signal was found in the subluminal stroma surrounding the implanting blastocyst. On days 6–8, Cryab mRNA was strongly expressed in the primary decidua. By real-time PCR, a high level of Cryab expression was detected on days 7 and 8 of pregnancy, although Cryab expression was seen from days 1 to 8. Under in vivo and in vitro artificial decidualization, Cryab expression was significantly elevated. Compared with the progesterone-primed delayed implantation uterus, a high level of Cryab mRNA expression was observed in estrogen-activated implantation uterus. In the uterine stromal cells, cAMP, estrogen, and progesterone could induce the expression of Cryab gene. In the ovariectomized mouse uterus, estrogen could also induce the expression of Cryab while progesterone inhibited its expression. Our data suggest that Cryab may play an important role during mouse embryo implantation and decidualization and that estrogen and progesterone can regulate the expression of Cryab gene.


2004 ◽  
Vol 24 (16) ◽  
pp. 7043-7058 ◽  
Author(s):  
Célia Jeronimo ◽  
Marie-France Langelier ◽  
Mahel Zeghouf ◽  
Marilena Cojocaru ◽  
Dominique Bergeron ◽  
...  

ABSTRACT We have programmed human cells to express physiological levels of recombinant RNA polymerase II (RNAPII) subunits carrying tandem affinity purification (TAP) tags. Double-affinity chromatography allowed for the simple and efficient isolation of a complex containing all 12 RNAPII subunits, the general transcription factors TFIIB and TFIIF, the RNAPII phosphatase Fcp1, and a novel 153-kDa polypeptide of unknown function that we named RNAPII-associated protein 1 (RPAP1). The TAP-tagged RNAPII complex is functionally active both in vitro and in vivo. A role for RPAP1 in RNAPII transcription was established by shutting off the synthesis of Ydr527wp, a Saccharomyces cerevisiae protein homologous to RPAP1, and demonstrating that changes in global gene expression were similar to those caused by the loss of the yeast RNAPII subunit Rpb11. We also used TAP-tagged Rpb2 with mutations in fork loop 1 and switch 3, two structural elements located strategically within the active center, to start addressing the roles of these elements in the interaction of the enzyme with the template DNA during the transcription reaction.


Stress ◽  
2014 ◽  
Vol 17 (6) ◽  
pp. 494-503 ◽  
Author(s):  
Guanhui Liu ◽  
Yulan Dong ◽  
Zixu Wang ◽  
Jing Cao ◽  
Yaoxing Chen

2019 ◽  
Vol 20 (6) ◽  
pp. 1335 ◽  
Author(s):  
Nina Smolinska ◽  
Karol Szeszko ◽  
Kamil Dobrzyn ◽  
Marta Kiezun ◽  
Edyta Rytelewska ◽  
...  

Comprehensive understanding of the regulatory mechanism of the implantation process in pigs is crucial for reproductive success. The endometrium plays an important role in regulating the establishment and maintenance of gestation. The goal of the current study was to determine the effect of adiponectin on the global expression pattern of genes and relationships among differentially expressed genes (DE-genes) in the porcine endometrium during implantation using microarrays. Diverse transcriptome analyses including gene ontology (GO), biological pathway, networks, and DE-gene analyses were performed. Adiponectin altered the expression of 1286 genes with fold-change (FC) values greater than 1.2 (p < 0.05). The expression of 560 genes were upregulated and 726 downregulated in the endometrium treated with adiponectin. Thirteen genes were selected for real-time PCR validation of differential expression based on a known role in metabolism, steroid and prostaglandin synthesis, interleukin and growth factor action, and embryo implantation. Functional analysis of the relationship between DE-genes indicated that adiponectin interacts with genes that are involved in the processes of cell proliferation, programmed cell death, steroid and prostaglandin synthesis/metabolism, cytokine production, and cell adhesion that are critical for reproductive success. The presented results suggest that adiponectin signalling may play a key role in the implantation of pig.


2021 ◽  
Vol 22 (14) ◽  
pp. 7696
Author(s):  
Jia-Peng He ◽  
Qing Tian ◽  
Qiu-Yang Zhu ◽  
Ji-Long Liu

Decidualization is a crucial step for human reproduction, which is a prerequisite for embryo implantation, placentation and pregnancy maintenance. Despite rapid advances over recent years, the molecular mechanism underlying decidualization remains poorly understood. Here, we used the mouse as an animal model and generated a single-cell transcriptomic atlas of a mouse uterus during decidualization. By analyzing the undecidualized inter-implantation site of the uterus as a control, we were able to identify global gene expression changes associated with decidualization in each cell type. Additionally, we identified intercellular crosstalk between decidual cells and niche cells, including immune cells, endothelial cells and trophoblast cells. Our data provide a valuable resource for deciphering the molecular mechanism underlying decidualization.


2017 ◽  
Vol 25 (8) ◽  
pp. 1197-1207 ◽  
Author(s):  
Qian Yang ◽  
Xuan Zhang ◽  
Yan Shi ◽  
Ya-Ping He ◽  
Zhao-Gui Sun ◽  
...  

Endocrinology ◽  
2009 ◽  
Vol 150 (2) ◽  
pp. 966-976 ◽  
Author(s):  
Li Chen ◽  
Robert J. Belton ◽  
Romana A. Nowak

Implantation of mouse embryos is dependent on the proliferation and differentiation of uterine stromal cells in a process called decidualization. Decidualization both supports and limits the invasion of the implanting embryo and is regulated in part by the expression of matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Molecules that alter the balance between MMP and TIMP expression could prevent implantation of the embryo. The membrane glycoprotein basigin (CD147/EMMPRIN), a known inducer of MMPs, is necessary for normal implantation in the mouse. The purpose of this study was to investigate the potential roles of basigin during implantation in the mouse. Using an in vitro stromal cell culture system, we found that recombinant human basigin protein (rBSG) increases MMP-3 and MMP-9 expression without altering TIMP-3 expression. Our results also showed rBSG induces expression of cytokines IL-1α/β and leukocyte chemoattractants, CCL3, CCL20, CXCL2, and CXCL5. More importantly, rBSG significantly suppressed stromal cell decidualization as shown by the inhibition of alkaline phosphatase-2 expression and activity by rBSG. However, rBSG did not affect stromal cell proliferation. Taken together, our data indicate that basigin mediates gene expression changes in mouse uterine stromal cells and suggests that temporal and spatial regulation of basigin expression may be involved in the recruitment of leukocytes to the mouse uterus during early pregnancy. The role of basigin during embryo implantation in mice is examined. Basigin regulates matrix metalloproteinase, IL-1, and leukocyte chemoattractant production by uterine stromal cells.


Sign in / Sign up

Export Citation Format

Share Document