scholarly journals Joint control of visually guided actions involves concordant increases in behavioural and neural coupling

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
David R. Painter ◽  
Jeffrey J. Kim ◽  
Angela I. Renton ◽  
Jason B. Mattingley

AbstractIt is often necessary for individuals to coordinate their actions with others. In the real world, joint actions rely on the direct observation of co-actors and rhythmic cues. But how are joint actions coordinated when such cues are unavailable? To address this question, we recorded brain activity while pairs of participants guided a cursor to a target either individually (solo control) or together with a partner (joint control) from whom they were physically and visibly separated. Behavioural patterns revealed that joint action involved real-time coordination between co-actors and improved accuracy for the lower performing co-actor. Concurrent neural recordings and eye tracking revealed that joint control affected cognitive processing across multiple stages. Joint control involved increases in both behavioural and neural coupling – both quantified as interpersonal correlations – peaking at action completion. Correspondingly, a neural offset response acted as a mechanism for and marker of interpersonal neural coupling, underpinning successful joint actions.

2019 ◽  
Vol 33 (2) ◽  
pp. 109-118
Author(s):  
Andrés Antonio González-Garrido ◽  
Jacobo José Brofman-Epelbaum ◽  
Fabiola Reveca Gómez-Velázquez ◽  
Sebastián Agustín Balart-Sánchez ◽  
Julieta Ramos-Loyo

Abstract. It has been generally accepted that skipping breakfast adversely affects cognition, mainly disturbing the attentional processes. However, the effects of short-term fasting upon brain functioning are still unclear. We aimed to evaluate the effect of skipping breakfast on cognitive processing by studying the electrical brain activity of young healthy individuals while performing several working memory tasks. Accordingly, the behavioral results and event-related brain potentials (ERPs) of 20 healthy university students (10 males) were obtained and compared through analysis of variances (ANOVAs), during the performance of three n-back working memory (WM) tasks in two morning sessions on both normal (after breakfast) and 12-hour fasting conditions. Significantly fewer correct responses were achieved during fasting, mainly affecting the higher WM load task. In addition, there were prolonged reaction times with increased task difficulty, regardless of breakfast intake. ERP showed a significant voltage decrement for N200 and P300 during fasting, while the amplitude of P200 notably increased. The results suggest skipping breakfast disturbs earlier cognitive processing steps, particularly attention allocation, early decoding in working memory, and stimulus evaluation, and this effect increases with task difficulty.


NeuroImage ◽  
2021 ◽  
Vol 228 ◽  
pp. 117602
Author(s):  
Ziqi Ren ◽  
Jie Li ◽  
Xuetong Xue ◽  
Xin Li ◽  
Fan Yang ◽  
...  

Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Mukul Mukherjee ◽  
Wen-Pin Chang ◽  
Ka-Chun Siu ◽  
Pierre Fayad ◽  
Nicholas Stergiou

Augmented visual feedback has been shown to be effective for learning reaching movements in dynamic environments after a stroke. However, the mechanisms behind such changes are not known. In addition, how brain activity changes with age as we learn novel dynamic tasks is also not clear. The purpose of this study was to examine brain activity changes that are observed when healthy younger and older adults and stroke survivors learn reaching movements in dynamic environments using augmented visual feedback. Healthy young and older adults and chronic stroke survivors were randomly assigned to either a control or an experimental group. They all performed reaching movements with the Inmotion2 robotic system (Interactive Motion Tech Inc., MA) using the dominant/affected arm in a velocity-dependent force field. Controls received actual feedback of their movement, while experimental subjects received augmented visual feedback. Electroencephalogram recordings were analyzed to determine Event Related Desynchronization percent (ERD%). The theta, alpha, and beta frequency bands were examined during movement and pre-movement phases. With learning, the absolute power of the frequency bands increased from the baseline to the adaptation condition, which was then washed out when the force field was removed. With age, there was a reduction in ERD% in alpha and beta bands as the motor task was learned. Stroke subjects had a further reduction in the ERD% in comparison to the healthy older adults. In addition, augmented visual feedback led to a significant increase in the ERD% in comparison to controls during the planning and execution stages of the movement. Past studies have shown when novel dynamics are learned, ERD% reduces indicating increased cognitive processing and memory load. We found that with aging, the cognitive processing and memory required for performing the same dynamic task, increased. After a stroke, there was a further increase. However, the utilization of augmented visual feedback may reduce such requirements and lessen the load on higher centers. These results provide mechanistic support for employing augmented visual feedback for stroke rehabilitation specific to reaching movements in dynamic environments.


2012 ◽  
Vol 108 (5) ◽  
pp. 1335-1348 ◽  
Author(s):  
Cynthia Poon ◽  
Lisa G. Chin-Cottongim ◽  
Stephen A. Coombes ◽  
Daniel M. Corcos ◽  
David E. Vaillancourt

It is well established that the prefrontal cortex is involved during memory-guided tasks whereas visually guided tasks are controlled in part by a frontal-parietal network. However, the nature of the transition from visually guided to memory-guided force control is not as well established. As such, this study examines the spatiotemporal pattern of brain activity that occurs during the transition from visually guided to memory-guided force control. We measured 128-channel scalp electroencephalography (EEG) in healthy individuals while they performed a grip force task. After visual feedback was removed, the first significant change in event-related activity occurred in the left central region by 300 ms, followed by changes in prefrontal cortex by 400 ms. Low-resolution electromagnetic tomography (LORETA) was used to localize the strongest activity to the left ventral premotor cortex and ventral prefrontal cortex. A second experiment altered visual feedback gain but did not require memory. In contrast to memory-guided force control, altering visual feedback gain did not lead to early changes in the left central and midline prefrontal regions. Decreasing the spatial amplitude of visual feedback did lead to changes in the midline central region by 300 ms, followed by changes in occipital activity by 400 ms. The findings show that subjects rely on sensorimotor memory processes involving left ventral premotor cortex and ventral prefrontal cortex after the immediate transition from visually guided to memory-guided force control.


2011 ◽  
Vol 17 (11) ◽  
pp. 1351-1361 ◽  
Author(s):  
S Huolman ◽  
P Hämäläinen ◽  
V Vorobyev ◽  
J Ruutiainen ◽  
R Parkkola ◽  
...  

Background: Cognitive decline and fatigue are typical in multiple sclerosis (MS). However, there is no official medication for either of these symptoms. Objective: The purpose of this study was to estimate the effects of a single dose of rivastigmine on processing speed and associated brain activity in patients with MS and subjective cognitive fatigue. Methods: Fifteen patients with MS and subjective cognitive fatigue and 13 healthy controls (HCs) matched for age, gender and education performed a neuropsychological assessment and functional (f)MRI. A modified version of the Paced Visual Serial Addition Test (mPVSAT) was used as the behavioural task during fMRIs. After the first scanning session, both groups were randomly divided into two subgroups receiving either rivastigmine or placebo. A single dose of rivastigmine or placebo was administrated double-blindly and 2.5 hours later the scanning was repeated. Results: At baseline, the patients with MS showed slower processing speed in mPVSAT compared with the HCs. They also demonstrated stronger bilateral frontal activation after sustained cognitive effort than the HCs. Performance improvement and a further activation increase in the left anterior frontal cortex and additional activation in the right cerebellum were observed in patients who received rivastigmine but not in patients on placebo, or in HCs with placebo or rivastigmine. Conclusion: These preliminary findings suggest that rivastigmine may improve cognitive processing speed by enhancing compensatory brain activation in patients with MS.


2016 ◽  
Vol 22 (1) ◽  
pp. 116-147 ◽  
Author(s):  
Domenica Veniero ◽  
Daniel Strüber ◽  
Gregor Thut ◽  
Christoph S. Herrmann

Recent methods that allow a noninvasive modulation of brain activity are able to modulate human cognitive behavior. Among these methods are transcranial electric stimulation and transcranial magnetic stimulation that both come in multiple variants. A property of both types of brain stimulation is that they modulate brain activity and in turn modulate cognitive behavior. Here, we describe the methods with their assumed neural mechanisms for readers from the economic and social sciences and little prior knowledge of these techniques. Our emphasis is on available protocols and experimental parameters to choose from when designing a study. We also review a selection of recent studies that have successfully applied them in the respective field. We provide short pointers to limitations that need to be considered and refer to the relevant papers where appropriate.


2013 ◽  
Vol 28 (5) ◽  
pp. 293-301 ◽  
Author(s):  
O. Lungu ◽  
K. Anselmo ◽  
G. Letourneau ◽  
A. Mendrek ◽  
B. Stip ◽  
...  

Abstract:BackgroundGiven the undesired metabolic side effects of atypical antipsychotic medication it is important to understand the neuronal basis related to processing of appetite regulation in patients affected by schizophrenia.Methods:Here we used functional magnetic resonance imaging (fMRI) to assess brain activity in response to food cues and neutral stimuli in twenty patients with schizophrenia and eleven healthy individuals. In addition to clinical and dietary habits assessments, we collected, in patients, measurements of fasting glucose, ghrelin, leptin, insulin, prolactin and lipids blood concentration and we correlated the cerebral activity with clinical and metabolic measures.Results:Both groups engaged a common neuronal network while processing food cues, which included the left insula, primary sensorimotor areas, and inferior temporal and parietal cortices. Cerebral responses to appetitive stimuli in thalamus, parahippocampus and middle frontal gyri were specific only to schizophrenic patients, with parahippocampal activity related to hunger state and increasing linearly over time. Antipsychotic medication dosage correlated positively with a cognitive measure reflecting food cravings, whereas the severity of the disease correlated negatively with a cognitive measure indicating dietary restraint in eating habits. These cognitive variables correlated, in turn, with parahippocampal and thalamic neuronal activities, respectively.Conclusions:We identified a specific neural substrate underlying cognitive processing of appetitive stimuli in schizophrenia, which may contribute to appetite dysfunction via perturbations in processing of homeostatic signals in relation to external stimuli. Our results also suggest that both antipsychotic medication and the disease severity per se could amplify these effects, via different mechanisms and neuronal networks.


2018 ◽  
Author(s):  
V. Mäki-Marttunen ◽  
T. Hagen ◽  
B. Laeng ◽  
T. Espeseth

AbstractWhen solving dynamic visuo-spatial tasks, the brain copes with perceptual and cognitive processing challenges. In the multiple-object tracking (MOT) task, the number of objects to be tracked (i.e. load) imposes attentional demands, but so does spatial interference from irrelevant objects (i.e. crowding). Presently, it is not clear whether load and crowding activate separate cognitive and physiological mechanisms. Such knowledge would be important to understand the neurophysiology of visual attention. Furthermore, it would help resolve conflicting views between theories of visual cognition, particularly concerning sources of capacity limitations. To address this problem, we varied the degree of processing challenge in the MOT task in two ways: First, the number of objects to track, and second, the spatial proximity between targets and distractors. We first measured task-induced pupil dilations and saccades during MOT. In a separate cohort we measured fMRI brain activity during MOT. The behavioral results in both cohorts revealed that increased load and crowding led to reduced accuracy in an additive manner. Load was associated with pupil dilations, whereas crowding was not. Activity in dorsal attentional areas and frequency of saccades were proportionally larger both with higher levels of load and crowding. Higher crowding recruited additionally ventral attentional areas that may reflect orienting mechanisms. The activity in the brainstem nuclei ventral tegmental area/substantia nigra and locus coeruleus showed clearly dissociated patterns. Our results constitute convergent evidence from independent samples that processing challenges due to load and object spacing may rely on different mechanisms.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chunli Chen ◽  
Huan Yang ◽  
Yasong Du ◽  
Guangzhi Zhai ◽  
Hesheng Xiong ◽  
...  

Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental brain disorders in childhood. Despite extensive researches, the neurobiological mechanism underlying ADHD is still left unveiled. Since the deficit functions, such as attention, have been demonstrated in ADHD, in our present study, based on the oddball P3 task, the corresponding electroencephalogram (EEG) of both healthy controls (HCs) and ADHD children was first collected. And we then not only focused on the event-related potential (ERP) evoked during tasks but also investigated related brain networks. Although an insignificant difference in behavior was found between the HCs and ADHD children, significant electrophysiological differences were found in both ERPs and brain networks. In detail, the dysfunctional attention occurred during the early stage of the designed task; as compared to HCs, the reduced P2 and N2 amplitudes in ADHD children were found, and the atypical information interaction might further underpin such a deficit. On the one hand, when investigating the cortical activity, HCs recruited much stronger brain activity mainly in the temporal and frontal regions, compared to ADHD children; on the other hand, the brain network showed atypical enhanced long-range connectivity between the frontal and occipital lobes but attenuated connectivity among frontal, parietal, and temporal lobes in ADHD children. We hope that the findings in this study may be instructive for the understanding of cognitive processing in children with ADHD.


2020 ◽  
Author(s):  
Georgin Jacob ◽  
Harish Katti ◽  
Thomas Cherian ◽  
Jhilik Das ◽  
Zhivago KA ◽  
...  

ABSTRACTMacaque monkeys are widely used to study the neural basis of cognition. In the traditional approach, the monkey is brought into a lab to perform tasks while it is restrained to obtain stable gaze tracking and neural recordings. This unnatural setting prevents studying brain activity during natural, social and complex behaviors. Here, we designed a naturalistic environment with an integrated behavioral workstation that enables complex task training with viable gaze tracking in freely moving monkeys. We used this facility to train monkeys on a challenging same-different task. Remarkably, this facility enabled a naïve monkey to learn the task merely by observing trained monkeys. This social training was faster primarily because the naïve monkey first learned the task structure and then the same-different rule. We propose that such hybrid environments can be used to study brain activity during natural behaviors as well as during controlled cognitive tasks.


Sign in / Sign up

Export Citation Format

Share Document