scholarly journals Scaling advantage of chaotic amplitude control for high-performance combinatorial optimization

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Timothée Leleu ◽  
Farad Khoyratee ◽  
Timothée Levi ◽  
Ryan Hamerly ◽  
Takashi Kohno ◽  
...  

AbstractThe development of physical simulators, called Ising machines, that sample from low energy states of the Ising Hamiltonian has the potential to transform our ability to understand and control complex systems. However, most of the physical implementations of such machines have been based on a similar concept that is closely related to relaxational dynamics such as in simulated, mean-field, chaotic, and quantum annealing. Here we show that dynamics that includes a nonrelaxational component and is associated with a finite positive Gibbs entropy production rate can accelerate the sampling of low energy states compared to that of conventional methods. By implementing such dynamics on field programmable gate array, we show that the addition of nonrelaxational dynamics that we propose, called chaotic amplitude control, exhibits exponents of the scaling with problem size of the time to find optimal solutions and its variance that are smaller than those of relaxational schemes recently implemented on Ising machines.

2021 ◽  
pp. 129768
Author(s):  
Dou Luo ◽  
Xue Lai ◽  
Nan Zheng ◽  
Chenghao Duan ◽  
Zhaojin Wang ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 644
Author(s):  
Do-Yeong Kim ◽  
Boram Kim ◽  
Han-Seung Shin

The effect of cellulosic aerogel treatments used for adsorption of four polycyclic aromatic hydrocarbons (PAHs)—benzo[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene [BaP])—generated during the manufacture of sesame oil was evaluated. In this study, eulalia (Miscanthus sinensis var. purpurascens)-based cellulosic aerogel (adsorbent) was prepared and used high performance liquid chromatography with fluorescence detection for determination of PAHs in sesame oil. In addition, changes in the sesame oil quality parameters (acid value, peroxide value, color, and fatty acid composition) following cellulosic aerogel treatment were also evaluated. The four PAHs and their total levels decreased in sesame oil samples roasted under different conditions (p < 0.05) following treatment with cellulosic aerogel. In particular, highly carcinogenic BaP was not detected after treatment with cellulosic aerogel. Moreover, there were no noticeable quality changes in the quality parameters between treated and control samples. It was concluded that eulalia-based cellulosic aerogel proved suitable for the reduction of PAHs from sesame oil and can be used as an eco-friendly adsorbent.


2021 ◽  
Vol 170 ◽  
pp. 112529
Author(s):  
N. Cruz ◽  
A.J.N. Batista ◽  
J.M. Cardoso ◽  
B.B. Carvalho ◽  
P.F. Carvalho ◽  
...  

Solar RRL ◽  
2021 ◽  
pp. 2100450
Author(s):  
Bing-Huang Jiang ◽  
Yi-Peng Wang ◽  
Yu-Wei Su ◽  
Jia-Fu Chang ◽  
Chu-Chen Chueh ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Lea Boßmann ◽  
Sören Petrat ◽  
Robert Seiringer

Abstract We consider a system of N bosons in the mean-field scaling regime for a class of interactions including the repulsive Coulomb potential. We derive an asymptotic expansion of the low-energy eigenstates and the corresponding energies, which provides corrections to Bogoliubov theory to any order in $1/N$ .


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1399
Author(s):  
Karina Yévenes ◽  
Ekaterina Pokrant ◽  
Lina Trincado ◽  
Lisette Lapierre ◽  
Nicolás Galarce ◽  
...  

Tetracyclines, sulphonamides, and quinolones are families of antimicrobials (AMs) widely used in the poultry industry and can excrete up to 90% of AMs administrated, which accumulate in poultry litter. Worryingly, poultry litter is widely used as an agriculture fertilizer, contributing to the spread AMs residues in the environment. The aim of this research was to develop a method that could simultaneously identify and quantify three AMs families in poultry litter by high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Samples of AMs free poultry litter were used to validate the method according to 657/2002/EC and VICH GL49. Results indicate that limit of detection (LOD) ranged from 8.95 to 20.86 μg kg−1, while limits of quantitation (LOQ) values were between 26.85 and 62.58 µg kg−1 of tetracycline, 4-epi-tetracycline, oxytetracycline, 4-epi-oxytetracycline, enrofloxacin, ciprofloxacin, flumequine, sulfachloropyridazine, and sulfadiazine. Recoveries obtained ranged from 93 to 108%. The analysis of field samples obtained from seven commercial poultry flocks confirmed the adequacy of the method since it detected means concentrations ranging from 20 to 10,364 μg kg−1. This provides us an accurate and reliable tool to monitor AMs residues in poultry litter and control its use as agricultural fertilizer.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1382
Author(s):  
Xiaoying Deng ◽  
Huazhang Li ◽  
Mingcheng Zhu

Based on the idea of bisection method, a new structure of All-Digital Phased-Locked Loop (ADPLL) with fast-locking is proposed. The structure and locking method are different from the traditional ADPLLs. The Control Circuit consists of frequency compare module, mode-adjust module and control module, which is responsible for adjusting the frequency control word of digital-controlled-oscillator (DCO) by Bisection method according to the result of the frequency compare between reference clock and restructure clock. With a high frequency cascade structure, the DCO achieves wide tuning range and high resolution. The proposed ADPLL was designed in SMIC 180 nm CMOS process. The measured results show a lock range of 640-to-1920 MHz with a 40 MHz reference frequency. The ADPLL core occupies 0.04 mm2, and the power consumption is 29.48 mW, with a 1.8 V supply. The longest locking time is 23 reference cycles, 575 ns, at 1.92 GHz. When the ADPLL operates at 1.28 GHz–1.6 GHz, the locking time is the shortest, only 9 reference cycles, 225 ns. Compared with the recent high-performance ADPLLs, our design shows advantages of small area, short locking time, and wide tuning range.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 108
Author(s):  
Céline Liaud ◽  
Sarah Chouvenc ◽  
Stéphane Le Calvé

The emergence of new super-insulated buildings to reduce energy consumption can lead to a degradation of the indoor air quality. While some studies were carried out to assess the air quality in these super-insulated buildings, they were usually focused on the measurement of gas phase pollutants such as carbon dioxide and volatile organic compounds. This work reports the first measurements of Polycyclic Aromatic Hydrocarbons (PAHs) associated with particles as a function of time and particle size in a low-energy building. The airborne particles were collected indoors and outdoors over three to four days of sampling using two three-stage cascade impactors allowing to sample simultaneously particles with aerodynamic diameter Dae > 10 µm, 2.5 µm < Dae < 10 µm, 1 µm < Dae < 2.5 µm, and Dae < 1 µm. The 16 US-EPA priority PAHs were then extracted and quantified by high-performance liquid chromatography (HPLC) coupled to fluorescence detection. The resulting total particle concentrations were low, in the ranges 3.73 to 9.66 and 0.60 to 8.83 µg m-3 for indoors and outdoors, respectively. Thirteen PAHs were always detected in all the samples. The total PAH concentrations varied between 290 and 415 pg m−3 depending on the particle size, the environment (indoors or outdoors) and the sampling period considered. More interestingly, the temporal variations of individual PAHs highlighted that high molecular weight PAHs were mainly associated to the finest particles and some of them exhibited similar temporal behaviors, suggesting a common emission source. The indoor-to-outdoor concentration ratios of individual PAH were usually found close to or less than 1, except during the event combining rainy conditions and limited indoor ventilation rate.


Sign in / Sign up

Export Citation Format

Share Document