scholarly journals Longitudinal study of stool-associated microbial taxa in sibling pairs with and without autism spectrum disorder

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Christine Tataru ◽  
Austin Martin ◽  
Kaitlyn Dunlap ◽  
Marie Peras ◽  
Brianna S. Chrisman ◽  
...  

AbstractAutism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder influenced by both genetic and environmental factors. Recently, gut dysbiosis has emerged as a powerful contributor to ASD symptoms. In this study, we recruited over 100 age-matched sibling pairs (between 2 and 8 years old) where one had an Autism ASD diagnosis and the other was developing typically (TD) (432 samples total). We collected stool samples over four weeks, tracked over 100 lifestyle and dietary variables, and surveyed behavior measures related to ASD symptoms. We identified 117 amplicon sequencing variants (ASVs) that were significantly different in abundance between sibling pairs across all three timepoints, 11 of which were supported by at least two contrast methods. We additionally identified dietary and lifestyle variables that differ significantly between cohorts, and further linked those variables to the ASVs they statistically relate to. Overall, dietary and lifestyle features were explanatory of ASD phenotype using logistic regression, however, global compositional microbiome features were not. Leveraging our longitudinal behavior questionnaires, we additionally identified 11 ASVs associated with changes in reported anxiety over time within and across all individuals. Lastly, we find that overall microbiome composition (beta-diversity) is associated with specific ASD-related behavioral characteristics.

Author(s):  
Jianjun Ou ◽  
Ruiting Liu ◽  
Yidong Shen ◽  
Kun Xia ◽  
Jingping Zhao

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder typically diagnosed in children in the first few years of life. Genetic studies have demonstrated a moderate to high heritability of ASD, but only a limited number of single nucleotide polymorphisms (SNPs) have been identified. Meanwhile, numerous single de novo rare variants and copy number variations have been detected in patients with ASD, which are likely caused by environmental factors. Here we provide an overview of genetic and environmental factors that may contribute to the risk of ASD and we recommend that further study should be focused on both genes and environmental factors, as well as their interactions with the expectation that epigenetic studies will lead to understanding the link between the environment and risk of ASD.


mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Maude M. David ◽  
Christine Tataru ◽  
Jena Daniels ◽  
Jessey Schwartz ◽  
Jessica Keating ◽  
...  

ABSTRACT The existence of a link between the gut microbiome and autism spectrum disorder (ASD) is well established in mice, but in human populations, efforts to identify microbial biomarkers have been limited due to a lack of appropriately matched controls, stratification of participants within the autism spectrum, and sample size. To overcome these limitations, we crowdsourced the recruitment of families with age-matched sibling pairs between 2 and 7 years old (within 2 years of each other), where one child had a diagnosis of ASD and the other did not. Parents collected stool samples, provided a home video of their ASD child’s natural social behavior, and responded online to diet and behavioral questionnaires. 16S rRNA V4 amplicon sequencing of 117 samples (60 ASD and 57 controls) identified 21 amplicon sequence variants (ASVs) that differed significantly between the two cohorts: 11 were found to be enriched in neurotypical children (six ASVs belonging to the Lachnospiraceae family), while 10 were enriched in children with ASD (including Ruminococcaceae and Bacteroidaceae families). Summarizing the expected KEGG orthologs of each predicted genome, the taxonomic biomarkers associated with children with ASD can use amino acids as precursors for butyragenic pathways, potentially altering the availability of neurotransmitters like glutamate and gamma aminobutyric acid (GABA). IMPORTANCE Autism spectrum disorder (ASD), which now affects 1 in 54 children in the United States, is known to have comorbidity with gut disorders of a variety of types; however, the link to the microbiome remains poorly characterized. Recent work has provided compelling evidence to link the gut microbiome to the autism phenotype in mouse models, but identification of specific taxa associated with autism has suffered replicability issues in humans. This has been due in part to sample size that sufficiently covers the spectrum of phenotypes known to autism (which range from subtle to severe) and a lack of appropriately matched controls. Our original study proposes to overcome these limitations by collecting stool-associated microbiome on 60 sibling pairs of children, one with autism and one neurotypically developing, both 2 to 7 years old and no more than 2 years apart in age. We use exact sequence variant analysis and both permutation and differential abundance procedures to identify 21 taxa with significant enrichment or depletion in the autism cohort compared to their matched sibling controls. Several of these 21 biomarkers have been identified in previous smaller studies; however, some are new to autism and known to be important in gut-brain interactions and/or are associated with specific fatty acid biosynthesis pathways.


2020 ◽  
Vol 27 (40) ◽  
pp. 6771-6786
Author(s):  
Geir Bjørklund ◽  
Nagwa Abdel Meguid ◽  
Maryam Dadar ◽  
Lyudmila Pivina ◽  
Joanna Kałużna-Czaplińska ◽  
...  

As a major neurodevelopmental disorder, Autism Spectrum Disorder (ASD) encompasses deficits in communication and repetitive and restricted interests or behaviors in childhood and adolescence. Its etiology may come from either a genetic, epigenetic, neurological, hormonal, or an environmental cause, generating pathways that often altogether play a synergistic role in the development of ASD pathogenesis. Furthermore, the metabolic origin of ASD should be important as well. A balanced diet consisting of the essential and special nutrients, alongside the recommended caloric intake, is highly recommended to promote growth and development that withstand the physiologic and behavioral challenges experienced by ASD children. In this review paper, we evaluated many studies that show a relationship between ASD and diet to develop a better understanding of the specific effects of the overall diet and the individual nutrients required for this population. This review will add a comprehensive update of knowledge in the field and shed light on the possible nutritional deficiencies, metabolic impairments (particularly in the gut microbiome), and malnutrition in individuals with ASD, which should be recognized in order to maintain the improved socio-behavioral habit and physical health.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kohei Kitagawa ◽  
Kensuke Matsumura ◽  
Masayuki Baba ◽  
Momoka Kondo ◽  
Tomoya Takemoto ◽  
...  

AbstractAutism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterized by core symptoms of impaired social behavior and communication. Recent studies have suggested that the oxytocin system, which regulates social behavior in mammals, is potentially involved in ASD. Mouse models of ASD provide a useful system for understanding the associations between an impaired oxytocin system and social behavior deficits. However, limited studies have shown the involvement of the oxytocin system in the behavioral phenotypes in mouse models of ASD. We have previously demonstrated that a mouse model that carries the ASD patient-derived de novo mutation in the pogo transposable element derived with zinc finger domain (POGZWT/Q1038R mice), showed ASD-like social behavioral deficits. Here, we have explored whether oxytocin (OXT) administration improves impaired social behavior in POGZWT/Q1038R mice and found that intranasal oxytocin administration effectively restored the impaired social behavior in POGZWT/Q1038R mice. We also found that the expression level of the oxytocin receptor gene (OXTR) was low in POGZWT/Q1038R mice. However, we did not detect significant changes in the number of OXT-expressing neurons between the paraventricular nucleus of POGZWT/Q1038R mice and that of WT mice. A chromatin immunoprecipitation assay revealed that POGZ binds to the promoter region of OXTR and is involved in the transcriptional regulation of OXTR. In summary, our study demonstrate that the pathogenic mutation in the POGZ, a high-confidence ASD gene, impairs the oxytocin system and social behavior in mice, providing insights into the development of oxytocin-based therapeutics for ASD.


Author(s):  
Shu Lih Oh ◽  
V. Jahmunah ◽  
N. Arunkumar ◽  
Enas W. Abdulhay ◽  
Raj Gururajan ◽  
...  

AbstractAutism spectrum disorder (ASD) is a neurological and developmental disorder that begins early in childhood and lasts throughout a person’s life. Autism is influenced by both genetic and environmental factors. Lack of social interaction, communication problems, and a limited range of behaviors and interests are possible characteristics of autism in children, alongside other symptoms. Electroencephalograms provide useful information about changes in brain activity and hence are efficaciously used for diagnosis of neurological disease. Eighteen nonlinear features were extracted from EEG signals of 40 children with a diagnosis of autism spectrum disorder and 37 children with no diagnosis of neuro developmental disorder children. Feature selection was performed using Student’s t test, and Marginal Fisher Analysis was employed for data reduction. The features were ranked according to Student’s t test. The three most significant features were used to develop the autism index, while the ranked feature set was input to SVM polynomials 1, 2, and 3 for classification. The SVM polynomial 2 yielded the highest classification accuracy of 98.70% with 20 features. The developed classification system is likely to aid healthcare professionals as a diagnostic tool to detect autism. With more data, in our future work, we intend to employ deep learning models and to explore a cloud-based detection system for the detection of autism. Our study is novel, as we have analyzed all nonlinear features, and we are one of the first groups to have uniquely developed an autism (ASD) index using the extracted features.


Toxics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 97
Author(s):  
Tristan Furnary ◽  
Rolando Garcia-Milian ◽  
Zeyan Liew ◽  
Shannon Whirledge ◽  
Vasilis Vasiliou

Recent epidemiological studies suggest that prenatal exposure to acetaminophen (APAP) is associated with increased risk of Autism Spectrum Disorder (ASD), a neurodevelopmental disorder affecting 1 in 59 children in the US. Maternal and prenatal exposure to pesticides from food and environmental sources have also been implicated to affect fetal neurodevelopment. However, the underlying mechanisms for ASD are so far unknown, likely with complex and multifactorial etiology. The aim of this study was to explore the potential effects of APAP and pesticide exposure on development with regards to the etiology of ASD by highlighting common genes and biological pathways. Genes associated with APAP, pesticides, and ASD through human research were retrieved from molecular and biomedical literature databases. The interaction network of overlapping genetic associations was subjected to network topology analysis and functional annotation of the resulting clusters. These genes were over-represented in pathways and biological processes (FDR p < 0.05) related to apoptosis, metabolism of reactive oxygen species (ROS), and carbohydrate metabolism. Since these three biological processes are frequently implicated in ASD, our findings support the hypothesis that cell death processes and specific metabolic pathways, both of which appear to be targeted by APAP and pesticide exposure, may be involved in the etiology of ASD. This novel exposures-gene-disease database mining might inspire future work on understanding the biological underpinnings of various ASD risk factors.


Foods ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 49
Author(s):  
Hae Jin Park ◽  
Su Jin Choi ◽  
Yuri Kim ◽  
Mi Sook Cho ◽  
Yu-Ri Kim ◽  
...  

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by a lack of social communication and restrictive, repetitive behaviors or interests. This study aimed to examine the mealtime behaviors and food preferences of students with ASD. An online questionnaire on mealtime behavior and food preferences of ASD students was conducted by caregivers including parents, and the average age of ASD students was 14.1 ± 6.1. The analysis of mealtime behavior resulted in classification into three clusters: cluster 1, the “low-level problematic mealtime behavior group”; cluster 2, the “mid-level problematic mealtime behavior group”; and cluster 3, the “high-level problematic mealtime behavior group”. Cluster 1 included older students than other clusters and their own specific dietary rituals. Meanwhile, cluster 3 included younger students than other clusters, high-level problematic mealtime behavior, and a low preference for food. In particular, there were significant differences in age and food preference for each subdivided ASD group according to their eating behaviors. Therefore, the content and method of nutrition education for ASD students’ needs a detailed approach according to the characteristics of each group.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1053
Author(s):  
Jasleen Dhaliwal ◽  
Ying Qiao ◽  
Kristina Calli ◽  
Sally Martell ◽  
Simone Race ◽  
...  

Autism Spectrum Disorder (ASD) is the most common neurodevelopmental disorder in children and shows high heritability. However, how inherited variants contribute to ASD in multiplex families remains unclear. Using whole-genome sequencing (WGS) in a family with three affected children, we identified multiple inherited DNA variants in ASD-associated genes and pathways (RELN, SHANK2, DLG1, SCN10A, KMT2C and ASH1L). All are shared among the three children, except ASH1L, which is only present in the most severely affected child. The compound heterozygous variants in RELN, and the maternally inherited variant in SHANK2, are considered to be major risk factors for ASD in this family. Both genes are involved in neuron activities, including synaptic functions and the GABAergic neurotransmission system, which are highly associated with ASD pathogenesis. DLG1 is also involved in synapse functions, and KMT2C and ASH1L are involved in chromatin organization. Our data suggest that multiple inherited rare variants, each with a subthreshold and/or variable effect, may converge to certain pathways and contribute quantitatively and additively, or alternatively act via a 2nd-hit or multiple-hits to render pathogenicity of ASD in this family. Additionally, this multiple-hits model further supports the quantitative trait hypothesis of a complex genetic, multifactorial etiology for the development of ASDs.


Author(s):  
Wei-Ju Chen ◽  
Zihan Zhang ◽  
Haocen Wang ◽  
Tung-Sung Tseng ◽  
Ping Ma ◽  
...  

Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication deficits and restricted or repetitive behaviors. Parental perceptions of the etiology of their child’s ASD can affect provider–client relationships, bonding between parents and their children, and the prognosis, treatment, and management of children with ASD. Thus, this study sought to examine the perceptions of ASD etiology of parents of children with ASD. Methods: Forty-two parents of children diagnosed with ASD were recruited across Texas. Semi-structured interviews were conducted individually. All interviews were recorded and later transcribed verbatim for content analysis utilizing NVivo 12.0 (QSR International, Doncaster, Australia). Results: The content analysis identified the following themes regarding parental perceptions of ASD etiology: Genetic factors (40.5%), environmental factors (31.0%), problems that occurred during pregnancy or delivery (23.8%), vaccinations (16.7%), other health problems (7.1%), parental age at the time of pregnancy (4.8%), and spiritual or religious factors (2.4%). Conclusions: The parental perceptions of ASD etiology were diverse, but several views, such as vaccinations and spiritual or religious factors, were not based on scientific evidence. Health professionals and researchers can use these findings to develop and provide targeted education to parents who have children with ASD. Our findings also support policymakers in developing campaigns designed to increase parental ASD awareness and knowledge.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2057
Author(s):  
Costanza Varesio ◽  
Serena Grumi ◽  
Martina Paola Zanaboni ◽  
Martina Maria Mensi ◽  
Matteo Chiappedi ◽  
...  

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with increasing incidence. An expanding body of literature is examining connections between ASD and dietary interventions. Existing reports suggest a beneficial effect of ketogenic dietary therapies (KDTs) in improving behavioral symptoms in ASD. In this context, the purpose of this scoping review was to identify and map available evidence in the literature about the feasibility and potential efficacy of KDTs in pediatric patients with ASD and to inform clinical practice in the field. Moreover, based on the resulting data from the literature review, we aimed to provide a shared protocol to develop a personalized KDT intervention in patients with ASD. A comprehensive and structured web-based literature search was performed using PubMed and Scopus and it yielded 203 records. Seven papers were finally selected and included in the review. Data were abstracted by independent coders. High variability was identified in study designs and dietary aspects emerged among selected studies. Results supported the effectiveness of KDTs in promoting behavioral improvements. Clinical recommendations on which patients may benefit most from KDTs implementation and difficulties in dietary adherence were discussed.


Sign in / Sign up

Export Citation Format

Share Document