scholarly journals Specific microRNAs Regulate Heat Stress Responses in Caenorhabditis elegans

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Camilla Nehammer ◽  
Agnieszka Podolska ◽  
Sebastian D. Mackowiak ◽  
Konstantinos Kagias ◽  
Roger Pocock

Abstract The ability of animals to sense and respond to elevated temperature is essential for survival. Transcriptional control of the heat stress response has been much studied, whereas its posttranscriptional regulation by microRNAs (miRNAs) is not well understood. Here we analyzed the miRNA response to heat stress in Caenorhabditis elegans and show that a discrete subset of miRNAs is thermoregulated. Using in-depth phenotypic analyses of miRNA deletion mutant strains we reveal multiple developmental and post-developmental survival and behavioral functions for specific miRNAs during heat stress. We have identified additional functions for already known players (mir-71 and mir-239) as well as identifying mir-80 and the mir-229 mir-64-66 cluster as important regulators of the heat stress response in C. elegans. These findings uncover an additional layer of complexity to the regulation of stress signaling that enables animals to robustly respond to the changing environment.

2020 ◽  
Vol 15 (4) ◽  
pp. 1934578X2091728
Author(s):  
Yoshihiko Nishioka ◽  
Seiya Nishikawa ◽  
Toshiyuki Shibata

Sideritis scardica is a Lamiaceae plant that is endemic to the alpine zone of the Balkan Peninsula. The tea of S. scardica has been handed down as a “tea of longevity” in the Rhodope region of Bulgaria for an unknown amount of time. In this study, we prepared a hot water extract of S. scardica (SHWE) and examined its effects on both life span and stress response in living tissue using Caenorhabditis elegans and its transgenic mutants. The life span of wild-type N2 worms was prolonged by approximately 15% at the SHWE concentration of 5 µg/mL and approximately 22% at the SHWE concentration of 50 µg/mL, as compared with the control group. The effect of SHWE on the expression of heat shock protein 16.2 (HSP-16.2) under heat stress was investigated using TJ375 worms, a transgenic mutant of C. elegans. In the TJ375 worms pretreated with SHWE, the fluorescence intensity of green fluorescent protein fluorescence, which indicates the expression of HSP-16.2, was significantly increased. In the assay using TJ356 worms, the worms pretreated with SHWE did not show the translocation of DAF-16, a forkhead transcription factor class O homolog, from the cytoplasm to nucleus under heat stress. Additionally, under heat stress, the pretreatment of SHWE improved the survival rate of GR1307 worms, a knockout mutant of daf-16. These results indicate that SHWE enhances HSP-16.2 expression through a stress-response pathway (eg, HSF-1 pathway) other than the DAF-16 pathway, resulting in a prolonged life span of C. elegans under heat stress.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1733
Author(s):  
Ho Viet Khoa ◽  
Puja Kumari ◽  
Hiroko Uchida ◽  
Akio Murakami ◽  
Satoshi Shimada ◽  
...  

The red alga ‘Bangia’ sp. ESS1, a ‘Bangia’ 2 clade member, responds to heat stress via accelerated asexual reproduction and acquires thermotolerance based on heat-stress memory. However, whether these strategies are specific to ‘Bangia’ 2, especially ‘Bangia’ sp. ESS1, or whether they are employed by all ‘Bangia’ species is currently unknown. Here, we examined the heat-stress responses of ‘Bangia’ sp. ESS2, a newly identified ‘Bangia’ clade 3 member, and Bangia atropurpurea. Intrinsic thermotolerance differed among species: Whereas ‘Bangia’ sp. ESS1 survived at 30 °C for 7 days, ‘Bangia’ sp. ESS2 and B. atropurpurea did not, with B. atropurpurea showing the highest heat sensitivity. Under sublethal heat stress, the release of asexual spores was highly repressed in ‘Bangia’ sp. ESS2 and completely repressed in B. atropurpurea, whereas it was enhanced in ‘Bangia’ sp. ESS1. ‘Bangia’ sp. ESS2 failed to acquire heat-stress tolerance under sublethal heat-stress conditions, whereas the acquisition of heat tolerance by priming with sublethal high temperatures was observed in both B. atropurpurea and ‘Bangia’ sp. ESS1. Finally, unlike ‘Bangia’ sp. ESS1, neither ‘Bangia’ sp. ESS2 nor B. atropurpurea acquired heat-stress memory. These findings provide insights into the diverse heat-stress response strategies among species from different clades of ‘Bangia’.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Wenke Wang ◽  
Amaresh Chaturbedi ◽  
Minghui Wang ◽  
Serim An ◽  
Satheeja Santhi Velayudhan ◽  
...  

C. elegans SET-9 and SET-26 are highly homologous paralogs that share redundant functions in germline development, but SET-26 alone plays a key role in longevity and heat stress response. Whereas SET-26 is broadly expressed, SET-9 is only detectable in the germline, which likely accounts for their different biological roles. SET-9 and SET-26 bind to H3K4me3 with adjacent acetylation marks in vitro and in vivo. In the soma, SET-26 acts through DAF-16 to modulate longevity. In the germline, SET-9 and SET-26 restrict H3K4me3 domains around SET-9 and SET-26 binding sites, and regulate the expression of specific target genes, with critical consequence on germline development. SET-9 and SET-26 are highly conserved and our findings provide new insights into the functions of these H3K4me3 readers in germline development and longevity.


2021 ◽  
Vol 22 (2) ◽  
pp. 948
Author(s):  
Zhaoxia Li ◽  
Stephen H. Howell

High temperatures causing heat stress disturb cellular homeostasis and impede growth and development in plants. Extensive agricultural losses are attributed to heat stress, often in combination with other stresses. Plants have evolved a variety of responses to heat stress to minimize damage and to protect themselves from further stress. A narrow temperature window separates growth from heat stress, and the range of temperatures conferring optimal growth often overlap with those producing heat stress. Heat stress induces a cytoplasmic heat stress response (HSR) in which heat shock transcription factors (HSFs) activate a constellation of genes encoding heat shock proteins (HSPs). Heat stress also induces the endoplasmic reticulum (ER)-localized unfolded protein response (UPR), which activates transcription factors that upregulate a different family of stress response genes. Heat stress also activates hormone responses and alternative RNA splicing, all of which may contribute to thermotolerance. Heat stress is often studied by subjecting plants to step increases in temperatures; however, more recent studies have demonstrated that heat shock responses occur under simulated field conditions in which temperatures are slowly ramped up to more moderate temperatures. Heat stress responses, assessed at a molecular level, could be used as traits for plant breeders to select for thermotolerance.


2020 ◽  
Vol 71 (6) ◽  
pp. 1782-1791 ◽  
Author(s):  
Fabiola Jaimes-Miranda ◽  
Ricardo A Chávez Montes

Abstract The Multiprotein Bridging Factor 1 (MBF1) proteins are transcription co-factors whose molecular function is to form a bridge between transcription factors and the basal machinery of transcription. MBF1s are present in most archaea and all eukaryotes, and numerous reports show that they are involved in developmental processes and in stress responses. In this review we summarize almost three decades of research on the plant MBF1 family, which has mainly focused on their role in abiotic stress responses, in particular the heat stress response. However, despite the amount of information available, there are still many questions that remain about how plant MBF1 genes, transcripts, and proteins respond to stress, and how they in turn modulate stress response transcriptional pathways.


Botany ◽  
2020 ◽  
Vol 98 (10) ◽  
pp. 589-602
Author(s):  
Ian Pierce ◽  
Gillian Halter ◽  
Elizabeth R. Waters

Global surface temperatures are expected to rise throughout the 21st century, and negatively impact plant growth and reproduction. Thus, it is imperative that we deepen our understanding of plant thermotolerance. The examination of native plant species that have evolved tolerance to high temperatures can provide crucial information on how plants can adapt to climate change. Boechera (Brassicaceae), a large genus that is native to North America, is highly thermotolerant, and can maintain photosynthetic activity at high temperatures. Here we report results of transcriptomic studies that seek to reveal possible thermotolerance mechanisms in B. depauperata (A.Nelson & P.B.Kenn.) Windham & Al-Shehbaz. Analysis of RNA-seq datasets from heat stressed B. depauperata and Arabidopsis thaliana (L.) Heynh. plants identified significant differences in how each of these species responds to identical heat stress conditions. The most highly upregulated heat-stress genes in A. thaliana includes the well-characterized heat-shock genes. In contrast, the Boechera heat-stress response is composed of: novel genes that lack orthologs in other genomes; genes coding for proteins of uncharacterized function; and genes coding for proteins associated with the unfolded protein and endoplasmic reticulum stress responses. In addition, genes that are protective of photosynthetic capacity are also differentially upregulated in B. depauperata.


Author(s):  
Avijit Mallick ◽  
Nikita Jhaveri ◽  
Jihae Jeon ◽  
Yvonne Chang ◽  
Krupali Shah ◽  
...  

Abstract The Axin family of scaffolding proteins regulates a wide array of developmental and post-developmental processes in eukaryotes. Studies in the nematode Caenorhabditis elegans have shown that the Axin homolog PRY-1 plays essential roles in multiple tissues. To understand the genetic network of pry-1, we focused on a set of genes that are differentially expressed in the pry-1-mutant transcriptome and are linked to reproductive structure development. Knocking down eight of the genes (spp-1, clsp-1, ard-1, rpn-7, cpz-1, his-7, cdk-1, and rnr-1) via RNA interference efficiently suppressed the multivulva phenotype of pry-1 mutants. In all cases, the ectopic induction of P3.p vulval precursor cell was also inhibited. The suppressor genes are members of known gene families in eukaryotes and perform essential functions. Our genetic interaction experiments revealed that in addition to their role in vulval development, these genes participate in one or more pry-1-mediated biological events. Whereas four of them (cpz-1, his-7, cdk-1, and rnr-1) function in both stress response and aging, two (spp-1 and ard-1) are specific to stress response. Altogether, these findings demonstrate the important role of pry-1 suppressors in regulating developmental and post-developmental processes in C. elegans. Given that the genes described in this study are conserved, future investigations of their interactions with Axin and their functional specificity promises to uncover the genetic network of Axin in metazoans.


2020 ◽  
Author(s):  
Ye Ren ◽  
Zhouquan Huang ◽  
Hao Jiang ◽  
Zhuo Wang ◽  
Fengsheng Wu ◽  
...  

AbstractHigh temperature often leads to the failure of grain filling in rice (Oryza sativa) to cause yield loss, while the mechanism is not well elucidated yet. Here, we report that two seed-specific NAM/ATAF/CUC domain transcription factors, ONAC127 and ONAC129, are responsive to heat stress and involved in the grain filling process of rice. ONAC127 and ONAC129 are dominantly expressed in the pericarp and can form a heterodimer during rice grain filling. CRISPR/Cas9 induced mutants and overexpression lines were then generated to investigate the functions of these two transcription factors. Interestingly, both knock-out and overexpression plants showed incomplete grain filling and shrunken grains, which became more severe under heat stress. Transcriptome analysis revealed that ONAC127 and ONAC129 mainly regulate stimulus response and nutrient transport. ChIP-seq analysis identified that the direct targets of ONAC127 and ONAC129 in developing rice seeds include monosaccharide transporter OsMST6, sugar transporter OsSWEET4, calmodulin-like protein OsMSR2 and AP2/ERF factor OsEATB. These results suggest that ONAC127 and ONAC129 may regulate grain filling through affecting sugar transportation and abiotic stress responses. Overall, this study demonstrates a transcriptional regulatory network involving ONAC127 and ONAC129 and coordinating multiple pathways to modulate seed development and heat stress response at rice reproductive stage.HighlightA NAC transcription factor heterodimer plays vital roles in heat stress response and sugar transportation at rice grain filling stage.


2017 ◽  
Author(s):  
Xi Lan ◽  
John C. F. Hsieh ◽  
Carl J. Schmidt ◽  
Qing Zhu ◽  
Susan J. Lamont

Sign in / Sign up

Export Citation Format

Share Document