scholarly journals Drosophila Rif1 is an essential gene and controls late developmental events by direct interaction with PP1-87B

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Easwaran Sreesankar ◽  
Vellaichamy Bharathi ◽  
Rakesh K. Mishra ◽  
Krishnaveni Mishra

Abstract Rif1, identified as a regulator of telomerase in yeast, is an evolutionarily conserved protein and functions in diverse processes including telomere length regulation, epigenetic gene regulation, anti-checkpoint activity, DNA repair and establishing timing of firing at replication origins. Previously we had identified that all Rif1 homologues have PP1 interacting SILK-RVxF motif. In the present study, we show that Drosophila Rif1 is essential for normal fly development and loss of dRif1 impairs temporal regulation of initiation of DNA replication. In multiple tissues dRif1 colocalizes with HP1, a protein known to orchestrate timing of replication in fly. dRif1 associates with chromosomes in a mitotic stage-dependent manner coinciding with dephosphorylation of histones. Ectopic expression of dRif1 causes enlarged larval imaginal discs and early pupal lethality which is completely reversed by co-expression of PP1 87B, the major protein phosphatase in Drosophila, indicating genetic and functional interaction. These findings suggest that dRif1 is an adaptor for PP1 and functions by recruiting PP1 to multiple sites on the chromosome.

2021 ◽  
Author(s):  
Momoe Nakajo ◽  
Hikaru Kano ◽  
Kenji Tsuyama ◽  
Nami Haruta ◽  
Asako Sugimoto

Centrosomes consist of two centrioles and surrounding pericentriolar material (PCM). PCM expands during mitosis in a process called centrosome maturation, in which PCM scaffold proteins play pivotal roles to recruit other centrosomal proteins. In C. elegans, the scaffold protein SPD-5 forms PCM scaffold in a PLK-1 phosphorylation-dependent manner. However, how phosphorylation of SPD-5 promotes PCM scaffold assembly is unclear. Here, we identified three functional domains of SPD-5 through in vivo domain analyses, and propose that sequential domain interactions of SPD-5 are required for mitotic PCM scaffold assembly. Firstly, SPD-5 is targeted to centrioles through direct interaction between its centriole localization (CL) domain and a centriolar protein PCMD-1. Then, intra- and inter-molecular interaction between SPD-5 phospho-regulated multimerization (PReM) domain and the PReM association (PA) domain is triggered by phosphorylation by PLK-1, which leads to PCM scaffold expansion. Our findings suggest that the sequential domain interactions of scaffold proteins mediated by Polo/PLK-1 phosphorylation is an evolutionarily conserved mechanism of PCM scaffold assembly.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1558
Author(s):  
Rajni Garg ◽  
Chinmay Anand ◽  
Sohini Ganguly ◽  
Sandhya Rao ◽  
Rinkee Verma ◽  
...  

Rv3852 is a unique nucleoid-associated protein (NAP) found exclusively in Mycobacterium tuberculosis (Mtb) and closely related species. Although annotated as H-NS, we showed previously that it is very different from H-NS in its properties and is distinct from other NAPs, anchoring to cell membrane by virtue of possessing a C-terminal transmembrane helix. Here, we investigated the role of Rv3852 in Mtb in organizing architecture or synthesis machinery of cell wall by protein–protein interaction approach. We demonstrated a direct physical interaction of Rv3852 with Wag31, an important cell shape and cell wall integrity determinant essential in Mtb. Wag31 localizes to the cell poles and possibly acts as a scaffold for cell wall synthesis proteins, resulting in polar cell growth in Mtb. Ectopic expression of Rv3852 in M. smegmatis resulted in its interaction with Wag31 orthologue DivIVAMsm. Binding of the NAP to Wag31 appears to be necessary for fine-tuning Wag31 localization to the cell poles, enabling complex cell wall synthesis in Mtb. In Rv3852 knockout background, Wag31 is mislocalized resulting in disturbed nascent peptidoglycan synthesis, suggesting that the NAP acts as a driver for localization of Wag31 to the cell poles. While this novel association between these two proteins presents one of the mechanisms to structure the elaborate multi-layered cell envelope of Mtb, it also exemplifies a new function for a NAP in mycobacteria.


2021 ◽  
Vol 22 (3) ◽  
pp. 1175
Author(s):  
Ryuta Inukai ◽  
Kanako Mori ◽  
Keiko Kuwata ◽  
Chihiro Suzuki ◽  
Masatoshi Maki ◽  
...  

Apoptosis-linked gene 2 (ALG-2, also known as PDCD6) is a member of the penta-EF-hand (PEF) family of Ca2+-binding proteins. The murine gene encoding ALG-2 was originally reported to be an essential gene for apoptosis. However, the role of ALG-2 in cell death pathways has remained elusive. In the present study, we found that cell death-inducing p53 target protein 1 (CDIP1), a pro-apoptotic protein, interacts with ALG-2 in a Ca2+-dependent manner. Co-immunoprecipitation analysis of GFP-fused CDIP1 (GFP-CDIP1) revealed that GFP-CDIP1 associates with tumor susceptibility gene 101 (TSG101), a known target of ALG-2 and a subunit of endosomal sorting complex required for transport-I (ESCRT-I). ESCRT-I is a heterotetrameric complex composed of TSG101, VPS28, VPS37 and MVB12/UBAP1. Of diverse ESCRT-I species originating from four VPS37 isoforms (A, B, C, and D), CDIP1 preferentially associates with ESCRT-I containing VPS37B or VPS37C in part through the adaptor function of ALG-2. Overexpression of GFP-CDIP1 in HEK293 cells caused caspase-3/7-mediated cell death. In addition, the cell death was enhanced by co-expression of ALG-2 and ESCRT-I, indicating that ALG-2 likely promotes CDIP1-induced cell death by promoting the association between CDIP1 and ESCRT-I. We also found that CDIP1 binds to vesicle-associated membrane protein-associated protein (VAP)A and VAPB through the two phenylalanines in an acidic tract (FFAT)-like motif in the C-terminal region of CDIP1, mutations of which resulted in reduction of CDIP1-induced cell death. Therefore, our findings suggest that different expression levels of ALG-2, ESCRT-I subunits, VAPA and VAPB may have an impact on sensitivity of anticancer drugs associated with CDIP1 expression.


Author(s):  
Jingyi Li ◽  
Mi-Ok Lee ◽  
Brian W Davis ◽  
Ping Wu ◽  
Shu-Man Hsieh-Li ◽  
...  

Abstract The Crest mutation in chicken shows incomplete dominance and causes a spectacular phenotype in which the small feathers normally present on the head are replaced by much larger feathers normally present only in dorsal skin. Using whole genome sequencing, we show that the crest phenotype is caused by a 197 bp duplication of an evolutionarily conserved sequence located in the intron of HOXC10 on chromosome 33. A diagnostic test showed that the duplication was present in all 54 crested chickens representing eight breeds and absent from all 433 non-crested chickens representing 214 populations. The mutation causes ectopic expression of at least five closely linked HOXC genes, including HOXC10, in cranial skin of crested chickens. The result is consistent with the interpretation that the crest feathers are caused by an altered body region identity. The upregulated HOXC gene expression is expanded to skull tissue of Polish chickens showing a large crest often associated with cerebral hernia, but not in Silkie chickens characterized by a small crest, both homozygous for the duplication. Thus, the 197 bp duplication is required for the development of a large crest and susceptibility to cerebral hernia because only crested chicken show this malformation. However, this mutation is not sufficient to cause herniation because this malformation is not present in breeds with a small crest, like Silkie chickens.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Qian Liu ◽  
Lijuan Guo ◽  
Hongyan Qi ◽  
Meng Lou ◽  
Rui Wang ◽  
...  

AbstractRibonucleotide reductase (RR) is a unique enzyme for the reduction of NDPs to dNDPs, the building blocks for DNA synthesis and thus essential for cell proliferation. Pan-cancer profiling studies showed that RRM2, the small subunit M2 of RR, is abnormally overexpressed in multiple types of cancers; however, the underlying regulatory mechanisms in cancers are still unclear. In this study, through searching in cancer-omics databases and immunohistochemistry validation with clinical samples, we showed that the expression of MYBL2, a key oncogenic transcriptional factor, was significantly upregulated correlatively with RRM2 in colorectal cancer (CRC). Ectopic expression and knockdown experiments indicated that MYBL2 was essential for CRC cell proliferation, DNA synthesis, and cell cycle progression in an RRM2-dependent manner. Mechanistically, MYBL2 directly bound to the promoter of RRM2 gene and promoted its transcription during S-phase together with TAF15 and MuvB components. Notably, knockdown of MYBL2 sensitized CRC cells to treatment with MK-1775, a clinical trial drug for inhibition of WEE1, which is involved in a degradation pathway of RRM2. Finally, mouse xenograft experiments showed that the combined suppression of MYBL2 and WEE1 synergistically inhibited CRC growth with a low systemic toxicity in vivo. Therefore, we propose a new regulatory mechanism for RRM2 transcription for CRC proliferation, in which MYBL2 functions by constituting a dynamic S-phase transcription complex following the G1/early S-phase E2Fs complex. Doubly targeting the transcription and degradation machines of RRM2 could produce a synthetic inhibitory effect on RRM2 level with a novel potential for CRC treatment.


2013 ◽  
Vol 203 (4) ◽  
pp. 673-689 ◽  
Author(s):  
Ah-Lai Law ◽  
Anne Vehlow ◽  
Maria Kotini ◽  
Lauren Dodgson ◽  
Daniel Soong ◽  
...  

Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd’s Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo.


1993 ◽  
Vol 13 (1) ◽  
pp. 399-407
Author(s):  
I J McEwan ◽  
A P Wright ◽  
K Dahlman-Wright ◽  
J Carlstedt-Duke ◽  
J A Gustafsson

We have used a yeast (Saccharomyces cerevisiae) cell free transcription system to study protein-protein interactions involving the tau 1 transactivation domain of the human glucocorticoid receptor that are important for transcriptional transactivation by the receptor. Purified tau 1 specifically inhibited transcription from a basal promoter derived from the CYC1 gene and from the adenovirus 2 major late core promoter in a concentration-dependent manner. This inhibition or squelching was correlated with the transactivation activity of tau 1. Recombinant yeast TATA-binding protein (yTFIID), although active in vitro, did not specifically reverse the inhibitory effect of tau 1. In addition, no specific interaction between tau 1 and yTFIID could be shown in vitro by affinity chromatography. Taken together, these results indicate that the tau 1 transactivation domain of the human glucocorticoid receptor interacts directly with the general transcriptional apparatus through some target protein(s) that is distinct from the TATA-binding factor. Furthermore, this assay can be used to identify interacting factors, since after phosphocellulose chromatography of a whole-cell yeast extract, a fraction that contained an activity which selectively counteracted the squelching effect of tau 1 was found.


2017 ◽  
Vol 114 (39) ◽  
pp. E8165-E8173 ◽  
Author(s):  
Arnab Basu ◽  
Mee-Ngan F. Yap

The bacterial hibernating 100S ribosome is a poorly understood form of the dimeric 70S particle that has been linked to pathogenesis, translational repression, starvation responses, and ribosome turnover. In the opportunistic pathogenStaphylococcus aureusand most other bacteria, hibernation-promoting factor (HPF) homodimerizes the 70S ribosomes to form a translationally silent 100S complex. Conversely, the 100S ribosomes dissociate into subunits and are presumably recycled for new rounds of translation. The regulation and disassembly of the 100S ribosome are largely unknown because the temporal abundance of the 100S ribosome varies considerably among different bacterial phyla. Here, we identify a universally conserved GTPase (HflX) as a bona fide dissociation factor of theS. aureus100S ribosome. The expression levelshpfandhflXare coregulated by general stress and stringent responses in a temperature-dependent manner. While all tested guanosine analogs stimulate the splitting activity of HflX on the 70S ribosome, only GTP can completely dissociate the 100S ribosome. Our results reveal the antagonistic relationship of HPF and HflX and uncover the key regulators of 70S and 100S ribosome homeostasis that are intimately associated with bacterial survival.


2020 ◽  
Vol 295 (39) ◽  
pp. 13617-13629
Author(s):  
Clément Immarigeon ◽  
Sandra Bernat-Fabre ◽  
Emmanuelle Guillou ◽  
Alexis Verger ◽  
Elodie Prince ◽  
...  

The evolutionarily conserved multiprotein Mediator complex (MED) serves as an interface between DNA-bound transcription factors (TFs) and the RNA Pol II machinery. It has been proposed that each TF interacts with a dedicated MED subunit to induce specific transcriptional responses. But are these binary partnerships sufficient to mediate TF functions? We have previously established that the Med1 Mediator subunit serves as a cofactor of GATA TFs in Drosophila, as shown in mammals. Here, we observe mutant phenotype similarities between another subunit, Med19, and the Drosophila GATA TF Pannier (Pnr), suggesting functional interaction. We further show that Med19 physically interacts with the Drosophila GATA TFs, Pnr and Serpent (Srp), in vivo and in vitro through their conserved C-zinc finger domains. Moreover, Med19 loss of function experiments in vivo or in cellulo indicate that it is required for Pnr- and Srp-dependent gene expression, suggesting general GATA cofactor functions. Interestingly, Med19 but not Med1 is critical for the regulation of all tested GATA target genes, implying shared or differential use of MED subunits by GATAs depending on the target gene. Lastly, we show a direct interaction between Med19 and Med1 by GST pulldown experiments indicating privileged contacts between these two subunits of the MED middle module. Together, these findings identify Med19/Med1 as a composite GATA TF interface and suggest that binary MED subunit–TF partnerships are probably oversimplified models. We propose several mechanisms to account for the transcriptional regulation of GATA-targeted genes.


Sign in / Sign up

Export Citation Format

Share Document