scholarly journals Repeated cultivation: non-cell disruption extraction of astaxanthin for Haematococcus pluvialis

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Han Sun ◽  
Bin Guan ◽  
Qing Kong ◽  
Zhaoyan Geng ◽  
Ni Wang
Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3569
Author(s):  
Yicheng Tan ◽  
Zhang Ye ◽  
Mansheng Wang ◽  
Muhammad Faisal Manzoor ◽  
Rana Muhammad Aadil ◽  
...  

In this study, the impact of different cell disruption techniques (high-pressure micro fluidization (HPMF), ionic liquids (ILs), multi-enzyme (ME), and hydrochloric acid (HCl)) on the chemical composition and biological activity of astaxanthin (AST) obtained from Haematococcus pluvialis was investigated. Results indicated that all cell disruption techniques had a significant effect on AST composition, which were confirmed by TLC and UPC2 analysis. AST recovery from HCl (HCl-AST) and ILs (ILs-AST) cell disruption techniques was dominant by free and monoesters AST, while AST recovery from HPMF (HPMF-AST) and ME (ME-AST) cell disruption techniques was composed of monoesters, diesters, and free AST. Further biological activity analysis displayed that HCl-AST showed the highest ABTS and DPPH activity, while ILs-AST showed better results against the ORAC assay. Additionally, ILs-AST exhibits a stronger anti-proliferation of HepG2 cells in a dose-dependent manner, which was ascribed to AST-induced ROS in to inhibit the proliferative of cancer cells.


2021 ◽  
Vol 2 ◽  
Author(s):  
Lucio Rodríguez-Sifuentes ◽  
Jolanta Elzbieta Marszalek ◽  
Gerardo Hernández-Carbajal ◽  
Cristina Chuck-Hernández

Astaxanthin (ASX) is a xanthophyll pigment considered as a nutraceutical with high antioxidant activity. Several clinical trials have shown the multiple health benefits of this molecule; therefore, it has various pharmaceutical industry applications. Commercial astaxanthin can be produced by chemical synthesis or through biosynthesis within different microorganisms. The molecule produced by the microorganisms is highly preferred due to its zero toxicity and superior therapeutic properties. However, the biotechnological production of the xanthophyll is not competitive against the chemical synthesis, since the downstream process may represent 70–80% of the process production cost. These operations denote then an opportunity to optimize the process and make this alternative more competitive. Since ASX is produced intracellularly by the microorganisms, high investment and high operational costs, like centrifugation and bead milling or high-pressure homogenization, are mainly used. In cell recovery, flocculation and flotation may represent low energy demanding techniques, whereas, after cell disruption, an efficient extraction technique is necessary to extract the highest percentage of ASX produced by the cell. Solvent extraction is the traditional method, but large-scale ASX production has adopted supercritical CO2 (SC-CO2), an efficient and environmentally friendly technology. On the other hand, assisted technologies are extensively reported since the cell disruption, and ASX extraction can be carried out in a single step. Because a high-purity product is required in pharmaceuticals and nutraceutical applications, the use of chromatography is necessary for the downstream process. Traditionally liquid-solid chromatography techniques are applied; however, the recent emergence of liquid-liquid chromatography like high-speed countercurrent chromatography (HSCCC) coupled with liquid-solid chromatography allows high productivity and purity up to 99% of ASX. Additionally, the use of SC-CO2, coupled with two-dimensional chromatography, is very promising. Finally, the purified ASX needs to be formulated to ensure its stability and bioavailability; thus, encapsulation is widely employed. In this review, we focus on the processes of cell recovery, cell disruption, drying, extraction, purification, and formulation of ASX mainly produced in Haematococcus pluvialis, Phaffia rhodozyma, and Paracoccus carotinifaciens. We discuss the current technologies that are being developed to make downstream operations more efficient and competitive in the biotechnological production process of this carotenoid.


2016 ◽  
Vol 218 ◽  
pp. 108-114 ◽  
Author(s):  
Francisco R.S. Machado ◽  
Thalles C. Trevisol ◽  
Daiane L. Boschetto ◽  
Janaína F.M. Burkert ◽  
Sandra R.S. Ferreira ◽  
...  

2021 ◽  
pp. 126124
Author(s):  
Bolam Kim ◽  
Soo Youn Lee ◽  
Aditya Lakshmi Narasimhan ◽  
Sangui Kim ◽  
You-Kwan Oh

2020 ◽  
Vol 10 (2) ◽  
pp. 513 ◽  
Author(s):  
Ramasamy Praveenkumar ◽  
Jiye Lee ◽  
Durairaj Vijayan ◽  
Soo Youn Lee ◽  
Kyubock Lee ◽  
...  

Haematococcus pluvialis accumulates astaxanthin, which is a high-value antioxidant, during the red cyst stage of its lifecycle. The development of a rigid cell wall in the cysts hinders the recovery of astaxanthin. We investigated morphological changes and cell disruption of mature H. pluvialis cyst cells while using high-pressure homogenization for astaxanthin extraction. When treated with French-press-cell (pressure, 10,000–30,000 psi; passage, 1–3), the intact cyst cells were significantly broken or fully ruptured, releasing cytoplasmic components, thereby facilitating the separation of astaxanthin by ethyl acetate. Fluorescence microscopy observations using three different fluorescent dyes revealed that a greater degree of cell breakage caused greater external dispersion of astaxanthin, chlorophyll, lipids, proteins, and carbohydrates. The mechanical treatment resulted in a high cell disruption rate of up to 91% based on microscopic cell typing and Coulter methods. After the ethyl acetate extraction, the astaxanthin concentration significantly increased by 15.2 mg/L in proportion to the increase in cell disruption rate, which indicates that cell disruption is a critical factor for solvent-based astaxanthin recovery. Furthermore, this study recommends a synergistic combination of the fast instrumental particle-volume-distribution analysis and microscope-based morphologic phenotyping for the development of practical H. pluvialis biorefinery processes that co-produce various biological products, including lipids, proteins, carbohydrates, chlorophyll, and astaxanthin.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 337
Author(s):  
Feng Li ◽  
Ning Zhang ◽  
Yulei Zhang ◽  
Qingsheng Lian ◽  
Caiying Qin ◽  
...  

Natural astaxanthin helps reduce the negative effects caused by oxidative stress and other related factors, thereby minimizing oxidative damage. Therefore, it has considerable potential and broad application prospects in human health and animal nutrition. Haematococcus pluvialis is considered to be the most promising cell factory for the production of natural astaxanthin. Previous studies have confirmed that nonmotile cells of H. pluvialis are more tolerant to high intensity of light than motile cells. Cultivating nonmotile cells as the dominant cell type in the red stage can significantly increase the overall astaxanthin productivity. However, we know very little about how to induce nonmotile cell formation. In this work, we first investigated the effect of phosphorus deficiency on the formation of nonmotile cells of H. pluvialis, and then investigated the effect of NaCl on the formation of nonmotile cells under the conditions of phosphorus deficiency. The results showed that, after three days of treatment with 0.1% NaCl under phosphorus deficiency, more than 80% of motile cells had been transformed into nonmotile cells. The work provides the most efficient method for the cultivation of H. pluvialis nonmotile cells so far, and it significantly improves the production of H. pluvialis astaxanthin.


2021 ◽  
Vol 11 (4) ◽  
pp. 1788
Author(s):  
Thanh-Tri Do ◽  
Binh-Nguyen Ong ◽  
Tuan-Loc Le ◽  
Thanh-Cong Nguyen ◽  
Bich-Huy Tran-Thi ◽  
...  

In the production of astaxanthin from Haematococcus pluvialis, the process of growing algal biomass in the vegetative green stage is an indispensable step in both suspended and immobilized cultivations. The green algal biomass is usually cultured in a suspension under a low light intensity. However, for astaxanthin accumulation, the microalgae need to be centrifuged and transferred to a new medium or culture system, a significant difficulty when upscaling astaxanthin production. In this research, a small-scale angled twin-layer porous substrate photobioreactor (TL-PSBR) was used to cultivate green stage biomass of H. pluvialis. Under low light intensities of 20–80 µmol photons m−2·s−1, algae in the biofilm consisted exclusively of non-motile vegetative cells (green palmella cells) after ten days of culturing. The optimal initial biomass density was 6.5 g·m−2, and the dry biomass productivity at a light intensity of 80 µmol photons m−2·s−1 was 6.5 g·m−2·d−1. The green stage biomass of H. pluvialis created in this small-scale angled TL-PSBR can be easily harvested and directly used as the source of material for the inoculation of a pilot-scale TL-PSBR for the production of astaxanthin.


Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 188
Author(s):  
Antia G. Pereira ◽  
Paz Otero ◽  
Javier Echave ◽  
Anxo Carreira-Casais ◽  
Franklin Chamorro ◽  
...  

Algae are considered pigment-producing organisms. The function of these compounds in algae is to carry out photosynthesis. They have a great variety of pigments, which can be classified into three large groups: chlorophylls, carotenoids, and phycobilins. Within the carotenoids are xanthophylls. Xanthophylls (fucoxanthin, astaxanthin, lutein, zeaxanthin, and β-cryptoxanthin) are a type of carotenoids with anti-tumor and anti-inflammatory activities, due to their chemical structure rich in double bonds that provides them with antioxidant properties. In this context, xanthophylls can protect other molecules from oxidative stress by turning off singlet oxygen damage through various mechanisms. Based on clinical studies, this review shows the available information concerning the bioactivity and biological effects of the main xanthophylls present in algae. In addition, the algae with the highest production rate of the different compounds of interest were studied. It was observed that fucoxanthin is obtained mainly from the brown seaweeds Laminaria japonica, Undaria pinnatifida, Hizikia fusiformis, Sargassum spp., and Fucus spp. The main sources of astaxanthin are the microalgae Haematococcus pluvialis, Chlorella zofingiensis, and Chlorococcum sp. Lutein and zeaxanthin are mainly found in algal species such as Scenedesmus spp., Chlorella spp., Rhodophyta spp., or Spirulina spp. However, the extraction and purification processes of xanthophylls from algae need to be standardized to facilitate their commercialization. Finally, we assessed factors that determine the bioavailability and bioaccesibility of these molecules. We also suggested techniques that increase xanthophyll’s bioavailability.


Sign in / Sign up

Export Citation Format

Share Document