Hydration, ionic valence and cross-linking propensities of cations determine the stability of lipopolysaccharide (LPS) membranes

2014 ◽  
Vol 50 (2) ◽  
pp. 231-233 ◽  
Author(s):  
Agrinaldo Nascimento ◽  
Frederico J. S. Pontes ◽  
Roberto D. Lins ◽  
Thereza A. Soares
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Y. Tong ◽  
G. R. Berdiyorov ◽  
A. Sinopoli ◽  
M. E. Madjet ◽  
V. A. Esaulov ◽  
...  

AbstractThe stability of the molecular self-assembled monolayers (SAMs) is of vital importance to the performance of the molecular electronics and their integration to the future electronics devices. Here we study the effect of electron irradiation-induced cross-linking on the stability of self-assembled monolayer of aromatic 5,5′-bis(mercaptomethyl)-2,2′-bipyridine [BPD; HS-CH2-(C5H3N)2-CH2-SH] on Au (111) single crystal surface. As a refence, we also study the properties of SAMs of electron saturated 1-dodecanethiol [C12; CH3-(CH2)11-SH] molecules. The stability of the considered SAMs before and after electron-irradiation is studied using low energy Ar+ cluster depth profiling monitored by recording the X-ray photoelectron spectroscopy (XPS) core level spectra and the UV-photoelectron spectroscopy (UPS) in the valance band range. The results indicate a stronger mechanical stability of BPD SAMs than the C12 SAMs. The stability of BPD SAMs enhances further after electron irradiation due to intermolecular cross-linking, whereas the electron irradiation results in deterioration of C12 molecules due to the saturated nature of the molecules. The depth profiling time of the cross-linked BPD SAM is more than 4 and 8 times longer than the profiling time obtained for pristine and BPD and C12 SAMs, respectively. The UPS results are supported by density functional theory calculations, which show qualitative agreement with the experiment and enable us to interpret the features in the XPS spectra during the etching process for structural characterization. The obtained results offer helpful options to estimate the structural stability of SAMs which is a key factor for the fabrication of molecular devices.


2017 ◽  
Vol 23 (4) ◽  
pp. 495-506 ◽  
Author(s):  
Larissa Falleiros ◽  
Bruna Cabral ◽  
Janaína Fischer ◽  
Carla Guidini ◽  
Vicelma Cardoso ◽  
...  

The immobilization and stabilization of Aspergillus oryzae ?-galactosidase on Duolite??A568 was achieved using a combination of physical adsorption, incubation step in buffer at pH 9.0 and cross-linking with glutaraldehyde and in this sequence promoted a 44% increase in enzymatic activity as compared with the biocatalyst obtained after a two-step immobilization process (adsorption and cross-linking). The stability of the biocatalyst obtained by three-step immobilization process (adsorption, incubation in buffer at pH 9.0 and cross-linking) was higher than that obtained by two-steps (adsorption and cross-linking) and for free enzyme in relation to pH, storage and reusability. The immobilized biocatalyst was characterized with respect to thermal stability in the range 55-65 ?C. The kinetics of thermal deactivation was well described by the first-order model, which resulted in the immobilized biocatalyst activation energy of thermal deactivation of 71.03 kcal/mol and 5.48 h half-life at 55.0 ?C.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 176 ◽  
Author(s):  
Wei Dong ◽  
Xuan Wang ◽  
Bo Tian ◽  
Yuguang Liu ◽  
Zaixing Jiang ◽  
...  

Aromatic voltage stabilizers can improve the dielectric properties of cross-linked polyethylene (XLPE); however, their poor compatibility with XLPE hinders their practical application. Improving the compatibility of aromatic voltage stabilizers with XLPE has, therefore, become a new research goal. Herein 1-(4-vinyloxy)phenylethenone (VPE) was prepared and characterized. It can be grafted onto polyethylene molecules during the cross-linking processes to promote stability of the aromatic voltage stabilizers in XLPE. Fourier transform infrared spectroscopy confirmed that VPE was successfully grafted onto XLPE, and effectively inhibited thermal migration. Thermogravimetric analysis showed that the grafted VPE/XLPE composite exhibits a better thermal stability than a VPE/PE blend composite. Evaluation of the electrical properties showed that the breakdown strength and electrical tree initiation voltage of the VPE/XLPE composite were increased by 15.5% and 39.6%, respectively, when compared to those of bare XLPE. After thermal aging, the breakdown strength and electrical tree initiation voltage of the VPE/XLPE composite were increased by 9.4% and 25.8%, respectively, in comparison to those of bare XLPE, which indicates that the grafted voltage stabilizer can effectively inhibit its migration and enhance the stability of the composite material.


2019 ◽  
Vol 7 (22) ◽  
pp. 6759-6766 ◽  
Author(s):  
Satoru Ohisa ◽  
Dai Takashima ◽  
Takayuki Chiba ◽  
Junji Kido

Cross-linking of polyethyleneimine ethoxylated using silane coupling agents improved the stability of organic light-emitting devices.


Spine ◽  
2006 ◽  
Vol 31 (15) ◽  
pp. E480-E485 ◽  
Author(s):  
Thomas P. Hedman ◽  
Hajeme Saito ◽  
Chuong Vo ◽  
Shih-Youeng Chuang

2002 ◽  
Vol 57 (3-4) ◽  
pp. 129-135
Author(s):  
Hsin-Yi Hsu ◽  
Chao-Chen Yang

The conductivities of the binary room-temperature molten salt (RTMS) systems ZnCl2-N-nbutylpyridinium chloride (BPC), ZnCl2 -1-ethyl-3-methylimidazolium chloride (EMIC) and ZnCl2 - benzyltriethylammonium chloride (BTEAC) have been measured at different temperatures and compositions by a d.c. four-probes method. The conductivities of the three RTMS are in the order ZnCl2-EMIC > ZnCl2-BPC > ZnCl2-BTEAC. In ZnCl2-BPC the conductivity at 70 to 150 °C, is maximal for 40 mol% ZnCl2. In ZnCl2 - EMIC, the conductivity below 130 °C is almost constant for 30 to 50 mol% ZnCl2 and has the lowest activation energy 25.21 kJ/mol. For these two systems, the conductivities decrease rapidly beyond 50 mol% ZnCl2 owing to the rapid increase in cross-linking and resultant tightening of the polyelectrolyte structure. As to the ZnCl2-BTEAC system, the conductivities at 110 - 150 °C decrease slowly for 30 - 60 mol% ZnCl2. The conductivities of the ZnCl2-EMICmelt are compared with those of the AlCl3-EMIC melt previously studied. The stability of the ZnCl2-EMIC melt system is explored by the effect of the environment on the conductivity and the Far Transmission Infra Red (FTIR) spectrum. It reveals that the effect is slight, and that the ZnCl2-EMIC melt may be classified as stable.


1985 ◽  
Vol 5 (12) ◽  
pp. 1041-1051 ◽  
Author(s):  
Joseph M. Wu ◽  
Stanley J. Wertheimer ◽  
Behruz Eslami ◽  
Joanne C. Figuereido ◽  
Biswendu B. Goswami

Rabbit reticulocyte lysates, gel filtered on Sephadex G-25 with or without ATP (or its analogs), were preincubated at 37°C and their subsequent binding to p3A4,3′-[32P]pCp was studied. Lysates filtered without ATP or in the presence of 0.1 mM 8-bromo-ATP, 1,N6-etheno-ATP, or ITP showed a time-dependent decrease in binding activity. This decrease was completely prevented when lysates were filtered with 0.1 mM ATP, 2′-deoxy-ATP, β-γ-methylene-ATP, or ATP-γ-S. The stability of binding provided by ATP or 2′-deoxy-ATP analogs corresponds to a more active 2–5A dependent endonucleolytic (RNAase L) activity based on studies using [3H] viral mRNA. Chromatography on heparin-agarose showed that ATP-supplemented gel-filtered reticulocyte lysates had a different p3A4,3′-[32P]pCp binding activity elution-profile than lysates gel-filtered in the absence of ATP. Covalent cross-linking of periodate-oxidized p3A4,3′-[32P]pC to gelfiltered lysates, preincubated at 0°C or 37°C for 30 min, showed the following results: (1) all lysates gave a major cross-linking of the radioactive ligand to an 80 000 dalton polypeptide, regardless of the temperature of preincubation, (2) Iysates gel-filtered without ATP, with 0.1 mM ITP, or β-γ-methylene-ATP, showed a significant reduction in the cross-linking of the 80 000 dalton protein, after preincubation at 37°C for 30 min. This decrease was accompanied by an increase in the labeling of two smaller polypeptides.


NANO ◽  
2021 ◽  
pp. 2150008
Author(s):  
Hongwei Liu ◽  
Jinhua Liu ◽  
Jun Li ◽  
Zhanchao Liu ◽  
Weifu Wu ◽  
...  

An excellent novel laminar and hierarchical polyethyleneimine cross-linked graphene oxide/titanium dioxide (GO–TiO2–PEI) membrane was successfully prepared by vacuum filtration technology using polyethyleneimine (PEI) as the cross-linking agent and a GO–TiO2 nanocomposite as the substrate. The resultant membrane (GO–TiO2–PEI) displayed a favorable antifouling performance with bovine serum albumin (BSA) and showed good hydrophilicity and wettability, with a static water contact angle of 13.2∘. The stability of the GO–TiO2–PEI membrane in aqueous solution obviously improved with the cross-linking of PEI compared with that of the GO and GO–TiO2 membranes. The GO–TiO2–PEI membrane also exhibited a satisfactory water flux of 48.6[Formula: see text]L m[Formula: see text] h[Formula: see text] bar[Formula: see text]. The GO–TiO2–PEI membrane exhibited a good performance for effectively separating different dyes including methylene blue (MB), rhodamine B (RB), methyl orange (MO), sunset yellow (SY), new coccine (NC) and amaranth. All the above results suggested that the GO–TiO2–PEI membrane could be used as an excellent stable hydrophilic membrane for efficiently separating dyes from aqueous solution.


2020 ◽  
Vol 25 ◽  
pp. 101117
Author(s):  
Tatyana A. Vakhonina ◽  
Alfira A. Valieva ◽  
Svetlana V. Kurmaz ◽  
Anvar Sh. Mukhtarov ◽  
Evgeniya O. Perepelitsina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document