Electrochemical stability of Sm0.5Sr0.5CoO3−δ-infiltrated YSZ for solid oxide fuel cells/electrolysis cells

2015 ◽  
Vol 182 ◽  
pp. 477-491 ◽  
Author(s):  
Hui Fan ◽  
Minfang Han

Composite SSC (Sm0.5Sr0.5CoO3−δ)–YSZ (yttria stabilized zirconia) oxygen electrodes were prepared by an infiltration process. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) of the composite electrodes showed the formation of SSC perovskite and a well-connected network of SSC particles in the porous YSZ backbone, respectively. The electrochemical performance of the cell was investigated under both fuel cell and steam electrolysis modes using polarization curves and electrochemical impedance spectroscopy (EIS). The cell experienced a large degradation rate at 700 °C with a constant voltage of 0.7 V for over 100 h under power generation operation. The subsequent post-cell SEM micrograph revealed that agglomeration of the infiltrated SSC particles was possibly the cause for the performance deterioration. Furthermore, the long-term stability of the cell was examined at 700 °C with a constant voltage of 1.3 V under steam electrolysis mode. SEM associated with energy dispersive X-ray spectroscopy (EDS) was employed to characterize the post-test cell after the long-term electrolysis operation and it indicated that besides the agglomeration of SSC particles, the delamination of the SSC–YSZ oxygen electrode from the YSZ electrolyte, as well as segregation of cobalt-enriched particles (particularly cobalt oxides) at the interface, was probably responsible for the cell degradation under the steam electrolysis mode.

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4344
Author(s):  
Merve Uca ◽  
Ece Eksin ◽  
Yasemin Erac ◽  
Arzum Erdem

Hydroxyapatite nanoparticles (HaP) and ionic liquid (IL) modified pencil graphite electrodes (PGEs) are newly developed in this assay. Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and cyclic voltammetry (CV) were applied to examine the microscopic and electrochemical characterization of HaP and IL-modified biosensors. The interaction of curcumin with nucleic acids and polymerase chain reaction (PCR) samples was investigated by measuring the changes at the oxidation signals of both curcumin and guanine by differential pulse voltammetry (DPV) technique. The optimization of curcumin concentration, DNA concentration, and the interaction time was performed. The interaction of curcumin with PCR samples was also investigated by gel electrophoresis.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 852
Author(s):  
Asiful H. Seikh ◽  
Hossam Halfa ◽  
Mahmoud S. Soliman

Molybdenum (Mo) is an important alloying element in maraging steels. In this study, we altered the Mo concentration during the production of four cobalt-free maraging steels using an electroslag refining process. The microstructure of the four forged maraging steels was evaluated to examine phase contents by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. Additionally, we assessed the corrosion resistance of the newly developed alloys in 3.5% NaCl solution and 1 M H2SO4 solution through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Furthermore, we performed SEM and energy-dispersive spectroscopy (EDS) analysis after corrosion to assess changes in microstructure and Raman spectroscopy to identify the presence of phases on the electrode surface. The microstructural analysis shows that the formation of retained austenite increases with increasing Mo concentrations. It is found from corrosion study that increasing Mo concentration up to 4.6% increased the corrosion resistance of the steel. However, further increase in Mo concentration reduces the corrosion resistance.


Author(s):  
Farah Wahida Harun ◽  
Siti Balkis Mahamat Nor ◽  
Siti Salhah Othman

This study was carried out to immobilize molybdenyl (VI) acetylacetonate (MoO2(acac)2) complex on alumina pillared montmorillonite K-10 (MMT K-10). Pillar MMT K-10 was produced by introducing MMT K-10 with a hydrolysis solution of NaOH with AlCl3. Different concentrations of pillaring solution were prepared in terms of OHto Al3+ ratio (0.5, 1.0, 1.5 and 2.0) to observe the structural characteristics of MMT K-10. The pillared materials were then immobilized with 0.1 M MoO2(acac)2 and were characterized using X-ray diffractometry (XRD), scanning electron microscopy coupled in an energy dispersive X-ray spectrometer (SEM-EDX) and Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR) techniques. FTIR bands at ca. 890 – 930 cm-1 indicate that the Mo complex was immobilized on the surface of pillared MMT K-10 not in between the layers. This is supported by the SEM and XRD analysis where the SEM micrograph showed deposition of Mo on the surface of MMT K-10 as well as no modification of basal spacing was observed by XRD. Meanwhile, the d(001) spacing of the alumina pillared MMT K10 samples were seen to increase slightly as the concentration of OH/Al3+ increased.


Author(s):  
Marwan Marwan ◽  
Eti Indarti ◽  
Darmadi Darmadi ◽  
Wahyu Rinaldi ◽  
Dzikri Hamzah ◽  
...  

Triacetin, an alternative biodiesel additive, was prepared by esterification of glycerol with acetic acid in the presence of chemically activated natural zeolite. The esterification was carried out in a small reaction flask under microwave irradiation. The catalyst was characterized for its morphology by SEM and its chemical composition by X-ray Diffraction (XRD). The Scanning Electron Microscopy (SEM) micrograph indicates improved surface area of the zeolite, while the XRD analysis shows an increase in Si/Al ratio from natural zeolite to 6.042 and its crystallinity value of 12.23%. The Fourier Transform Infra Red (FTIR) analysis obtained showed that microwave-heated samples have an esters group spectrum of triacetin at 1702 cm-1. The conversion value of glycerol was more than 95% at molar ratio of the reactants 1:9 and catalyst loading of 3%. The selectivities for monoacetin, diacetin and triacetin were 80.1%, 15.4%, and 4.5% at 60 minutes, and 43.0%, 48.6%, and 8.3% at 90 minutes. It shows that the conversion took place in consecutive steps and the use of microwave allows the reaction proceeding at milder condition. Copyright © 2019 BCREC Group. All rights reserved 


Author(s):  
qingjie wang ◽  
Sandrine Ricote ◽  
Yu Wang ◽  
Peter Vang Hendriksen ◽  
Jian-Qiang Wang ◽  
...  

Abstract In this study, a composite oxygen electrode is prepared by infiltrating a protonic-electronic conducting material, Ba0.5Gd0.8La0.7Co2O6−δ (BGLC) into a proton-conducting BaZr0.8Y0.2O3-δ (BZY20) backbone. The composite oxygen electrode is studied in a symmetrical cell configuration (BGLC-BZY20//BZY20//BGLC-BZY20). The electrode and cell performance are characterized via electrochemical impedance spectroscopy (EIS) with varying the operating conditions, including temperatures, oxygen, and steam partial pressures, with the purpose to identify and characterize the different electrochemical processes taking place in the oxygen electrode. Three electrode reaction processes are observed in the impedance spectra, which are tentatively assigned to i) diffusion of adsorbed oxygen/proton migration/hydroxyl formation, ii) oxygen reduction, and iii) charge transfer, going from the low- to high-frequency range. The BGLC-BZY20 electrode developed in this work shows a low polarization resistance of 0.22, 0.58, and 1.43 Ω cm2 per single electrode in 3 % humidified synthetic air (21% O2/79% N2) at 600, 550, and 500 °C, respectively. During long-term measurement, the cell shows no degradation in the first 350 hours but degrades afterward possibly due to insufficient material stability.


2013 ◽  
Vol 11 (2) ◽  
Author(s):  
Gianfranco DiGiuseppe ◽  
Li Sun

This paper reports a new study where relatively long-term tests of about a 1000 h are performed on several planar anode-supported solid oxide fuel cells. The cell electrochemical behaviors are studied by using voltage-current density measurement, electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The cell total polarization obtained from electrochemical impedance spectroscopy results is shown to be consistent with the area-specific resistance calculated from the voltage-current density curve over the course of the test. In addition, a four-constant phase element model is used to analyze the cell components resistances at different intervals over the lifetime of the test. Scanning electron microscopy and energy-dispersive X-ray spectroscopy are used postmortem to determine if any damages occurred to the cells and to determine if any change in composition occurred to the lanthanum strontium cobalt ferrite cathode. This study shows that the tested cells remain stable with a relatively small increase in the cell total polarization but with no increase in ohmic resistance.


2017 ◽  
Vol 894 ◽  
pp. 89-93
Author(s):  
Mitch Irene Kate N. Galvan ◽  
Leslie Joy L. Diaz

With the current trend of miniaturization and portability of electronic gadgets, the development of polymer composite electrolyte (PCE) gained much research interest. In this study PAN matrix was plasticized with various dimethyl formamide (DMF)/ propylene carbonate (PC) ratios. X-ray diffraction (XRD) analysis revealed that both DMF and PC reduce the crystallinity of PAN. Yet, films with higher amount of PC caused much decrease in crystallinity, which is indicated by lowering of full with at half maximum (FWHM) at the utmost 57% when the DMF/PC ratio is 1:2. Differential scanning calorimetry (DSC) analysis also revealed that glass transition temperature (Tg) of PAN decreased from 83.34°C to 50.27°C when plasticized with pure DMF and to temperature lower than ambient condition when PC alone was used. Upon incorporation of 15 wt% Li-MMT, PCEs with pure DMF exhibited the highest electrical conductivity, which is 3.6x10-8 S/cm based on electrochemical impedance spectroscopy (EIS). This suggests that the electrical conductivity is not dictated by the decrease on polymer host crystallinity alone. The type of plasticizer and appropriate combination was shown to have an effect wherein the plasticizer that causes higher degree of solvation and has lower boiling point is thought to provide more hopping sites for electrons due to higher amount of broken bonds in the nitrile group of PAN.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 237
Author(s):  
Tianyu Zhang ◽  
Teng Zhang ◽  
Yuting He ◽  
Sheng Zhang ◽  
Binlin Ma ◽  
...  

Aircraft are subjected to extreme weather conditions in coastal areas. This study reports long-term atmospheric exposure tests carried out on an epoxy primer-coated aluminum alloy in a coastal environment for 7, 12, and 20 years. The micromorphology and characteristics of the section and surface, the products of corrosion, electrochemical impedance, and molecular structure of the coated specimens were examined through a spectrophotometer, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectrometer (XPS). The results showed that the angles of contact of the specimens with different numbers of years of atmospheric exposure satisfied the normal distribution. Their fractal dimensions increased with an increase in the duration of exposure. Intergranular corrosion and exfoliation corrosion appeared in the specimens after 20 years, where the product of corrosion was Al(OH)3. The impedances and thermal properties of the epoxy coatings were influenced by the synergistic effects of aging and post-curing. The impedances of the coatings decreased greatly after long-term atmospheric exposure. After 20 years of corrosion, the specimen showed the characteristics of the substrate being corroded. The mechanism of corrosion and the electrochemical equivalent circuit were also analyzed.


Inorganics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Svetlana Niketic ◽  
Chae-Ho Yim ◽  
Jigang Zhou ◽  
Jian Wang ◽  
Yaser Abu-Lebdeh

The high voltage spinel material LiMn1.5Ni0.5O4 (LMNO) has the potential to increase the energy density of lithium batteries. However, its battery performance suffers from poor long-term cycling and high-temperature stability. In order to overcome these limitations, we have studied the effect of partial substitution of Mn with Ti and LiMn1.5−x Ni0.5TixO4 (x = 0.05, 0.1, 0.3), LMNTO, materials have been synthesized in a newly modified sol-gel method and then characterized by TEM, SEM (EDX), AC Electrochemical Impedance Spectroscopy and Soft X-ray Spectromicroscopy. We have demonstrated that the long-term cycling limitation with these types of materials can be resolved and herein 2000 cycles at a high C-rate have been demonstrated in half cells. We have attributed this behavior to a possible charge compensation mechanism as evidenced by a Soft X-ray Spectromicroscopy study of delithiated LMNTO materials. This work takes high energy density batteries based on high voltage spinel material one step further towards commercialization, and it is believed that further improvement can be achieved using new electrolyte formulations.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Amal Al-Borno ◽  
Xianyi Chen ◽  
Shailesh Kewaldas Dhoke

Fusion Bond Epoxy (FBE) coating system was exposed to 5% sodium hydroxide at elevated temperature for 30 days. The result of exposure showed formation of adhere deposit layer, a discolored zone underneath and remaining un-affected bulk of the coating. The deterioration of the coating was characterized using analytical techniques like scanning electron microscopy (SEM), energy-dispersive X-ray (EDAX) spectroscopy, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), pull-off adhesion, and electrochemical impedance spectroscopy (EIS). Results obtained indicated chemical deterioration of the coating in the discolored zone and leaching of low molecular weight coating component forming deposit layer. Although the adhesion strength and barrier property were not affected, the polymer matrix in the affected zone undergoes severe changes in its surface microstructure, primary chemical structure, and glass transition temperature. This may inflict serious impairment of the coating functional properties and premature failure of the coating in long term exposure.


Sign in / Sign up

Export Citation Format

Share Document