Chiral Zn–salen complexes: a new class of fluorescent receptors for enantiodiscrimination of chiral amines

2017 ◽  
Vol 41 (3) ◽  
pp. 911-915 ◽  
Author(s):  
Roberta Puglisi ◽  
Francesco P. Ballistreri ◽  
Chiara M. A. Gangemi ◽  
Rosa Maria Toscano ◽  
Gaetano A. Tomaselli ◽  
...  

Highly efficient enantiomeric discrimination of chiral amines by fluorescent Zn–salen receptors is reported for the first time.

2014 ◽  
Vol 5 (5) ◽  
pp. 1875-1880 ◽  
Author(s):  
Fabio Juliá ◽  
Delia Bautista ◽  
Jesús M. Fernández-Hernández ◽  
Pablo González-Herrero

Tris-cyclometalated Pt(IV) complexes are reported for the first time. The facial isomers exhibit long-lived 3LC emissions with quantum yields up to 0.49, the highest ever found for Pt(IV) complexes, combined with a strong oxidizing character in the excited state.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mark A. T. Blaskovich ◽  
Angela M. Kavanagh ◽  
Alysha G. Elliott ◽  
Bing Zhang ◽  
Soumya Ramu ◽  
...  

AbstractAntimicrobial resistance threatens the viability of modern medicine, which is largely dependent on the successful prevention and treatment of bacterial infections. Unfortunately, there are few new therapeutics in the clinical pipeline, particularly for Gram-negative bacteria. We now present a detailed evaluation of the antimicrobial activity of cannabidiol, the main non-psychoactive component of cannabis. We confirm previous reports of Gram-positive activity and expand the breadth of pathogens tested, including highly resistant Staphylococcus aureus, Streptococcus pneumoniae, and Clostridioides difficile. Our results demonstrate that cannabidiol has excellent activity against biofilms, little propensity to induce resistance, and topical in vivo efficacy. Multiple mode-of-action studies point to membrane disruption as cannabidiol’s primary mechanism. More importantly, we now report for the first time that cannabidiol can selectively kill a subset of Gram-negative bacteria that includes the ‘urgent threat’ pathogen Neisseria gonorrhoeae. Structure-activity relationship studies demonstrate the potential to advance cannabidiol analogs as a much-needed new class of antibiotics.


RSC Advances ◽  
2015 ◽  
Vol 5 (61) ◽  
pp. 49295-49300 ◽  
Author(s):  
Handan Pamuk ◽  
Burak Aday ◽  
Fatih Şen ◽  
Muharrem Kaya

Pt NPs@GO has been used for the first time for synthesizing acridinedione from dimedone, aromatic aldehydes and various amines as a catalyst.


2010 ◽  
Vol 54 (6) ◽  
pp. 2345-2353 ◽  
Author(s):  
Nicolas A. Margot ◽  
Craig S. Gibbs ◽  
Michael D. Miller

ABSTRACT Bevirimat (BVM) is the first of a new class of anti-HIV drugs with a novel mode of action known as maturation inhibitors. BVM inhibits the last cleavage of the Gag polyprotein by HIV-1 protease, leading to the accumulation of the p25 capsid-small peptide 1 (SP1) intermediate and resulting in noninfectious HIV-1 virions. Early clinical studies of BVM showed that over 50% of the patients treated with BVM did not respond to treatment. We investigated the impact of prior antiretroviral (ARV) treatment and/or natural genetic diversity on BVM susceptibility by conducting in vitro phenotypic analyses of viruses made from patient samples. We generated 31 recombinant viruses containing the entire gag and protease genes from 31 plasma samples from HIV-1-infected patients with (n = 21) or without (n = 10) prior ARV experience. We found that 58% of the patient isolates tested had a >10-fold reduced susceptibility to BVM, regardless of the patient's ARV experience or the level of isolate resistance to protease inhibitors. Analysis of mutants with site-directed mutations confirmed the role of the V370A SP1 polymorphism (SP1-V7A) in resistance to BVM. Furthermore, we demonstrated for the first time that a capsid polymorphism, V362I (CA protein-V230I), is also a major mutation conferring resistance to BVM. In contrast, none of the previously defined resistance-conferring mutations in Gag selected in vitro (H358Y, L363M, L363F, A364V, A366V, or A366T) were found to occur among the viruses that we analyzed. Our results should be helpful in the design of diagnostics for prediction of the potential benefit of BVM treatment in HIV-1-infected patients.


2021 ◽  
Author(s):  
Sandeep Pandey ◽  
Amit Kumar ◽  
Manoj Karakoti ◽  
Kuldeep K. Garg ◽  
Aniket Rana ◽  
...  

Herein, we report the first time application of waste plastic derived 3D graphene nanosheets (GNs) for hole transport material (HTM) free perovskite solar cells (PSCs), where 3D GNs has been...


2016 ◽  
Vol 4 (7) ◽  
pp. 2445-2452 ◽  
Author(s):  
Mohammad Ziaur Rahman ◽  
Jingrun Ran ◽  
Youhong Tang ◽  
Mietek Jaroniec ◽  
Shi Zhang Qiao

We introduce a three-step method (co-polymerization, surface activation and exfoliation) for the first time to synthesize sub-nanometer-thin carbon nitride nanosheets as highly efficient hydrogen evolution photocatalysts.


1995 ◽  
Vol 400 ◽  
Author(s):  
R.T. Malkhassian

AbstractA new technology for obtainment of amorphous single-component metals is presented.For the first time the reduction of molybdenum oxide with formation of its amorphous phase is realized in conditions of a given quantum-chemical technology by means of vibrationally excited to the third quantum level hydrogen molecules with 1.5 ± 0.2 eV energy. The evidences of formation of this nonequilibrium amorphous phase are presented along with certain physicochemical properties of the obtained amorphous molybdenum.A model is proposed for the origin of amorphous phase under the influence of nonequilibrium quantum-chemical technology.


Author(s):  
Xiaolin Wang ◽  
Li-Ming Yang

We for the first time report the discovery of a series of highly efficient electrocatalysts, i.e., transition metal anchored N/O-codoped graphene, for nitrogen fixation via high-throughput screening combined with first-principles...


VLSI Design ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yin Li ◽  
Yu Zhang ◽  
Xiaoli Guo

Recently, we present a novel Mastrovito form of nonrecursive Karatsuba multiplier for all trinomials. Specifically, we found that related Mastrovito matrix is very simple for equally spaced trinomial (EST) combined with classic Karatsuba algorithm (KA), which leads to a highly efficient Karatsuba multiplier. In this paper, we consider a new special class of irreducible trinomial, namely, xm+xm/3+1. Based on a three-term KA and shifted polynomial basis (SPB), a novel bit-parallel multiplier is derived with better space and time complexity. As a main contribution, the proposed multiplier costs about 2/3 circuit gates of the fastest multipliers, while its time delay matches our former result. To the best of our knowledge, this is the first time that the space complexity bound is reached without increasing the gate delay.


RSC Advances ◽  
2016 ◽  
Vol 6 (107) ◽  
pp. 105638-105643 ◽  
Author(s):  
Shutao Gao ◽  
Tao Feng ◽  
Qiuhua Wu ◽  
Cheng Feng ◽  
Ningzhao Shang ◽  
...  

A novel bimetallic catalyst, AgPd nanoalloy supported on Vulcan XC-72 carbon (AgPd@C-72), has been successfully fabricated and used for catalyzing H2 generation from formaldehyde aqueous solution at room temperature for the first time.


Sign in / Sign up

Export Citation Format

Share Document