Infrared atmospheric solids analysis probe (IR-ASAP) mass spectrometry for ambient analysis of volatile compounds without heated gas

2017 ◽  
Vol 9 (34) ◽  
pp. 5009-5014 ◽  
Author(s):  
Sara Madarshahian ◽  
Milan Pophristic ◽  
Charles N. McEwen

The IR-ASAP approach described is a simple yet highly sensitive ambient ionization method for analysis of vaporizable compounds without need of heated pressurized gas, thus making it especially amenable to portable mass spectrometers.

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7185
Author(s):  
Oliver Gould ◽  
Natalia Drabińska ◽  
Norman Ratcliffe ◽  
Ben de Lacy Costello

Mass spectrometry (MS) is an analytical technique that can be used for various applications in a number of scientific areas including environmental, security, forensic science, space exploration, agri-food, and numerous others. MS is also continuing to offer new insights into the proteomic and metabolomic fields. MS techniques are frequently used for the analysis of volatile compounds (VCs). The detection of VCs from human samples has the potential to aid in the diagnosis of diseases, in monitoring drug metabolites, and in providing insight into metabolic processes. The broad usage of MS has resulted in numerous variations of the technique being developed over the years, which can be divided into hyphenated and real-time MS techniques. Hyphenated chromatographic techniques coupled with MS offer unparalleled qualitative analysis and high accuracy and sensitivity, even when analysing complex matrices (breath, urine, stool, etc.). However, these benefits are traded for a significantly longer analysis time and a greater need for sample preparation and method development. On the other hand, real-time MS techniques offer highly sensitive quantitative data. Additionally, real-time techniques can provide results in a matter of minutes or even seconds, without altering the sample in any way. However, real-time MS can only offer tentative qualitative data and suffers from molecular weight overlap in complex matrices. This review compares hyphenated and real-time MS methods and provides examples of applications for each technique for the detection of VCs from humans.


2017 ◽  
Vol 89 (17) ◽  
pp. 9056-9061 ◽  
Author(s):  
Donghwi Kim ◽  
Un Hyuk Yim ◽  
Byungjoo Kim ◽  
Sangwon Cha ◽  
Sunghwan Kim

2016 ◽  
Vol 62 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Christina R Ferreira ◽  
Karen E Yannell ◽  
Alan K Jarmusch ◽  
Valentina Pirro ◽  
Zheng Ouyang ◽  
...  

Abstract BACKGROUND One driving motivation in the development of point-of-care (POC) diagnostics is to conveniently and immediately provide information upon which healthcare decisions can be based, while the patient is on site. Ambient ionization mass spectrometry (MS) allows direct chemical analysis of unmodified and complex biological samples. This suite of ionization techniques was introduced a decade ago and now includes a number of techniques, all seeking to minimize or eliminate sample preparation. Such approaches provide new opportunities for POC diagnostics and rapid measurements of exogenous and endogenous molecules (e.g., drugs, proteins, hormones) in small volumes of biological samples, especially when coupled with miniature mass spectrometers. CONTENT Ambient MS-based techniques are applied in diverse fields such as forensics, pharmaceutical development, reaction monitoring, and food analysis. Clinical applications of ambient MS are at an early stage but show promise for POC diagnostics. This review provides a brief overview of various ambient ionization techniques providing background, examples of applications, and the current state of translation to clinical practice. The primary focus is on paper spray (PS) ionization, which allows quantification of analytes in complex biofluids. Current developments in the miniaturization of mass spectrometers are discussed. SUMMARY Ambient ionization MS is an emerging technology in analytical and clinical chemistry. With appropriate MS instrumentation and user-friendly interfaces for automated analysis, ambient ionization techniques can provide quantitative POC measurements. Most significantly, the implementation of PS could improve the quality and lower the cost of POC testing in a variety of clinical settings.


Author(s):  
Rini Rini ◽  
Daimon Syukri ◽  
Fauzan Azima

Rendang is a traditional-specific food in Indonesia. Rendang is generally made with beef, coconut milk, and spices. There are two types of rendang according to its time processing. Rendang “kalio” is a final product of rendang that needs a short heating period while dried rendang is produced by the longer heating period. In the present study, the profile of the volatile compounds that most obtained from spices was analyzed by gas chromatography-mass spectrometry (GC-MS) to characterize the influence of the cooking period on the flavor characteristic of two available types of rendang. There were dozens of volatile compounds identified including carboxylic, aromatic, carbonyl, and alcohols where carboxylic and aromatics were the predominant volatile fractions. The results indicated that the cooking period affected the profile of volatile compounds between "kalio" rendang and dried rendang. Carboxylic and aromatics were less in the dried rendang compared to the rendang “kalio” where others were opposites. The increase of carbonyls and alcohol during the cooking process has suggested can play a crucial role in the flavor of dried rendang.


2019 ◽  
Vol 15 (7) ◽  
pp. 710-715
Author(s):  
S.T. Narenderan ◽  
Basuvan Babu ◽  
T. Gokul ◽  
Subramania Nainar Meyyanathan

Objective: The aim of the present work is to achieve a novel highly sensitive chromatographic method for the simultaneous determination of hepatitis C agents, sofosbuvir and velpatasvir from human plasma using ritonavir as an internal standard. Methods: Chromatographic separation was achieved using Hypersil C18 column (50mm x 4.6mm, 3μm) with an isocratic elution mode using the mobile phase composition 10 mM ammonium formate buffer (pH 5.0): acetonitrile (20:80 v/v) pumped at a flow rate of 0.5 ml/min. The detection was carried out by tandem mass spectrometry using Multiple Reaction Monitoring (MRM) positive Electrospray Ionization (ESI) with proton adducts at m/z 530.10 > 243.10, 883.40 > 114.0 and 721.25 > 197.0. Results: The method validated as per USFDA guidelines with respect to linearity, accuracy, and precision was found to be acceptable over the concentration range of 0.2–2000 ng/ml and 5-2000 ng/ml for sofosbuvir and velpatasvir respectively and the method was found to be highly sensitive and selective. Conclusion: The developed tandem mass spectrometric method is robust and can be applied for the monitoring of plasma levels of the analyzed drug in preclinical and clinical pharmacokinetic studies.


RSC Advances ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 2496-2499 ◽  
Author(s):  
Jiying Pei ◽  
Kefu Yu ◽  
Yinghui Wang

Ambient ionization source, thermal bursting ionization (TBI), was characterized for complex liquid sample analysis with mass spectrometry.


2021 ◽  
Vol 22 (3) ◽  
pp. 1085
Author(s):  
Aneeqa Noor ◽  
Saima Zafar ◽  
Inga Zerr

Proteinopathy refers to a group of disorders defined by depositions of amyloids within living tissue. Neurodegenerative proteinopathies, including Alzheimer’s disease, Parkinson’s disease, Creutzfeldt–Jakob disease, and others, constitute a large fraction of these disorders. Amyloids are highly insoluble, ordered, stable, beta-sheet rich proteins. The emerging theory about the pathophysiology of neurodegenerative proteinopathies suggests that the primary amyloid-forming proteins, also known as the prion-like proteins, may exist as multiple proteoforms that contribute differentially towards the disease prognosis. It is therefore necessary to resolve these disorders on the level of proteoforms rather than the proteome. The transient and hydrophobic nature of amyloid-forming proteins and the minor post-translational alterations that lead to the formation of proteoforms require the use of highly sensitive and specialized techniques. Several conventional techniques, like gel electrophoresis and conventional mass spectrometry, have been modified to accommodate the proteoform theory and prion-like proteins. Several new ones, like imaging mass spectrometry, have also emerged. This review aims to discuss the proteoform theory of neurodegenerative disorders along with the utility of these proteomic techniques for the study of highly insoluble proteins and their associated proteoforms.


Sign in / Sign up

Export Citation Format

Share Document