scholarly journals Liquefaction of waste pine wood and its application in the synthesis of a flame retardant polyurethane foam

RSC Advances ◽  
2017 ◽  
Vol 7 (48) ◽  
pp. 30334-30344 ◽  
Author(s):  
Dizhu Yue ◽  
Oluwasola Oribayo ◽  
Garry L. Rempel ◽  
Qinmin Pan

The utilization of sustainable forestry waste resources in the production of polyurethane (PU) foam is a promising green alternative to the use of un-sustainable resources.

Author(s):  
Amanda Silva ◽  
Enio Henrique Pires da Silva ◽  
Danilo Janes ◽  
Romeu Rony Cavalcante da Costa ◽  
Giovanna Gabriela Crem Silva

2014 ◽  
Vol 875-877 ◽  
pp. 534-541 ◽  
Author(s):  
Chawalit Thinvongpituk ◽  
Nirut Onsalung

In this paper, the experimental investigation of polyurethane (PU) foam-filled into circular aluminum tubes subjected to axial crushing was presented. The purpose of this study is to improve the energy absorption of aluminium tube under axial quasi-static load. The aluminium tube was made from the AA6063-T5 aluminium alloy tubes. Each tube was filled with polyurethane foam. The density of foam was varied from 100, 150 and 200 kg/mP3P including with empty tube. The range of diameter/thickness (D/t) ratio of tube was varied from 15-55. The specimen were tested by quasi-static axial load with crush speed of 50 mm/min using the 2,000 kN universal testing machine. The load-displacement curves while testing were recorded for calculation. The mode of collapse of each specimen was analyzed concerning on foam density and the influence of D/t ratio. The results revealed that the tube with foam-filled provided significantly increment of the energy absorption than that of the empty tube. While the density of foam and D/t ratios increase, the tendency of collapse mode is transformed from asymmetric mode to concertina mode.


2019 ◽  
Vol 9 (1) ◽  
pp. 481-489
Author(s):  
D.C. Lat ◽  
I.B.M. Jais ◽  
N. Ali ◽  
B. Baharom ◽  
N.Z. Mohd Yunus ◽  
...  

AbstractPolyurethane (PU) foam is a lightweight material that can be used efficiently as a ground improvement method in solving excessive and differential settlement of soil foundation mainly for infrastructures such as road, highway and parking spaces. The ground improvement method is done by excavation and removal of soft soil at shallow depth and replacement with lightweight PU foam slab. This study is done to simulate the model of marine clay soil integrated with polyurethane foam using finite element method (FEM) PLAXIS 2D for prediction of settlement behavior and uplift effect due to polyurethane foam mitigation method. Model of soft clay foundation stabilized with PU foam slab with variation in thickness and overburden loads were analyzed. Results from FEM exhibited the same trend as the results of the analytical method whereby PU foam has successfully reduced the amount of settlement significantly. With the increase in PU foam thickness, the settlement is reduced, nonetheless the uplift pressure starts to increase beyond the line of effective thickness. PU foam design chart has been produced for practical application in order to adopt the effective thickness of PU foam within tolerable settlement value and uplift pressure with respect to different overburden loads for ground improvement works.


2011 ◽  
Vol 311-313 ◽  
pp. 301-308
Author(s):  
Shou Hong Han ◽  
Zhen Hua Lu ◽  
Yong Jin Liu

In order to investigate the multi-axial mechanical properties of a kind of PU (polyurethane) foam, some experiments in different loading conditions including uni-axial tension, uni-axial compression, hydrostatic compression and three-point bending were conducted. It is shown that the hydrostatic component influences yield behavior of PU foam, the yield strength and degree of strain hardening in hydrostatic compression exceed those for uni-axial compression. In terms of the differential hardening constitutive model, the evolution of PU foam yield surface and plastic hardening laws were fitted from experimental data. A finite element method was applied to analyze the quasi-static responses of the PU foam sandwich beam subjected to three-point bending, and good agreement was observed between experimental load-displacement responses and computational predictions, which validated the multi-axial loading methods and stress-strain constitutive model parameters. Moreover, effects of two foam models applied to uni-axial loading and multi-axial loading conditions were analyzed and compared with three-point bending tests and simulations. It is found that the multi-axial constitutive model can bring more accurate prediction whose parameters are obtained from the tests above mentioned.


2014 ◽  
Vol 1030-1032 ◽  
pp. 241-245 ◽  
Author(s):  
Yan Wei Li

In this paper, the effect of C3H6N6modified by imidazolium based Ionic Liquid 1-butyl-methylimidazolium hexafluorophosphate ([BMIM]PF6) on polyurethane rigid foam flame retardant properties was conducted.The results show that the flame retardant properties of C3H6N6 modified with Ionic Liquid significantly increased and the LOI increased form 22.3 to 24.5. In the modification process, the ionic liquid mass have a very noticeable effect to the flame retardant property and when [BMIM]PF6 and C3H6N6 in quality was 4:6, Fire-retardant effect was best.Compared with the prior to the modification, C3H6N6 modified can increase effective Flame resistance of materials, horizontal burning speed from 67.6mm/min down to 33.4mm/min.Thermal degradation data show that C3H6N6 modified could improve initial decomposition temperature and reminder yield of rigid polyurethane foam,and then heat release reduced, the decomposition controlled,thermal stability increased.


2020 ◽  
pp. 409-416
Author(s):  
Chandra Jayakody ◽  
Dan Myers ◽  
Malcolm Crocker ◽  
Kelly Bures ◽  
Jeff Bridge ◽  
...  

2021 ◽  
pp. 2101044
Author(s):  
Shibo Wang ◽  
Penghao Sun ◽  
Xu Xu ◽  
He Liu ◽  
Dan Wang ◽  
...  

2021 ◽  
pp. 19-23
Author(s):  
Н.П. Копылов ◽  
Е.Ю. Сушкина ◽  
В.И. Новикова ◽  
В.В. Яшин

Описана методика исследования скорости выгорания различных материалов. Для реализации методики создана лабораторная установка. Экспериментально установлено, что процесс выгорания материалов зависит от температуры реактора и скорости воздушного потока. Кривая выгорания имеет S-образный вид и три характерных участка: индукционный период, линейный участок и участок реакции, где происходит выгорание углеродистого остатка. В табличной форме представлены результаты исследования некоторых широко распространенных материалов. The article describes a method for studying the burnout rate of various materials. There was created the laboratory plant for implementation of the method. It is experimentally established that the process of burnout of materials depends on the temperature of the reactor and the air flow rate. The burn-up curve has an S-shape and three characteristic sections: the induction period, the linear section, and the reaction section where the carbon residue burns out. The article presents the results of study of some widely distributed materials in tabular form. The mass burn rate of beech wood is 1.5 times higher than that one of pine. Perhaps this is due to the impregnation of beech with furniture varnish, since the sample was part of the furniture lining. It is noteworthy that significant discrepancy in the burn-up rates was obtained during combustion of samples of different brands of polyurethane foams. So, for hard polyurethane foam - “izolan 2”, which has a flame retardant in its composition, burnout curves with longer induction period are obtained (as a result of flame retardant action). However, the burnout rate is higher in comparison with soft polyurethane foam without flame retardant (foam rubber). The composition of the material “isolan-2”. Rubber also has a long induction period, but a high burnout rate.


Sign in / Sign up

Export Citation Format

Share Document