scholarly journals Encapsulation of Diclofenac Molecules into Poly(-Caprolactone) Electrospun Fibers for Delivery Protection

2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Loredana Tammaro ◽  
Giuseppina Russo ◽  
Vittoria Vittoria

Mg-Al Hydrotalcite-like clay (LDH) intercalated with diclofenac anions (HTlc-DIC) was introduced into poly(-caprolactone) (PCL) in different concentrations by the electrospinning technique, and mats of nonwoven fibers were obtained and compared to the pristine pure electrospun PCL. The fibers, characterized by X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry, show an exfoliated clay structure up to 3 wt%, a good thermal stability of the diclofenac molecules and a crystallinity of PCL comparable to the pure polymer. The scanning electron microscopy revealed electrospun PCL and PCL composite fibers diameters ranging between 500 nm to 3.0 m and a generally uniform thickness along the fibers. As the results suggested the in vitro drug release from the composite fibers is remarkably slower than the release from the corresponding control spun solutions of PCL and diclofenac sodium salt. Thus, HTlc-DIC/PCL fibrous membranes can be used as an antinflammatory scaffold for tissue engineering.

2019 ◽  
Vol 41 (1) ◽  
pp. 133-133
Author(s):  
Muhammad Zaman Muhammad Zaman ◽  
Muhammad Hanif Muhammad Hanif ◽  
Syed Saeed Ul Hassan Syed Saeed Ul Hassan ◽  
Javed Iqbal and Muhammad Ahmad Shehzad Javed Iqbal and Muhammad Ahmad Shehzad

The purpose of the current study was to enhance the solubility of the meloxicam (MLX) by preparing complex with β-Cyclodextrin (CD) and maltodextrin (MD). Dextrins have the ability to capture the drug inside their cavities without forming any chemical bonding. Three (3) formulations, each of solid dispersion (SD) and physical mixture (PM) were prepared by using different drug to polymer ratios (1:4, 1:6 and 1:8) followed by evaluation for micromeritic properties, drug contents, and in vitro drug release studies, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and x-ray diffraction (XRD) studies. Chemical compatibility of the ingredients was evaluated by using Fourier transform infrared spectroscopy (FTIR). Results of conducted studies exposed excellent flow properties of SDs as well as prepared PMs, with reasonable amount of loaded drug, i.e. andgt;90%. SEM showed a bit irregular surface while XRD suggested crystalline behavior of pure drug, which was masked after its conversion into SDs and PMs based on dextrins. Solubility of the MLX was increased significantly form its initial extent of solubility i.e. 12.5 and#181;g/ml in pure form to 786.72 and#181;g/ml in the form of SD (pandlt;0.05), advocating suitability of materials and methods for solubility enhancement of MLX.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 254
Author(s):  
Syed Mahmood ◽  
Samah Hamed Almurisi ◽  
Khater AL-Japairai ◽  
Ayah Rebhi Hilles ◽  
Walla Alelwani ◽  
...  

Ibuprofen is a well-known non-steroidal anti-inflammatory (NSAID) medicine that is often used to treat inflammation in general. When given orally, it produces gastrointestinal issues which lead to lower patient compliance. Ibuprofen transdermal administration improves both patient compliance and the efficacy of the drug. Nanoconjugation hydrogels were proposed as a controlled transdermal delivery tool for ibuprofen. Six formulations were prepared using different compositions including chitosan, lipids, gum arabic, and polyvinyl alcohol, through ionic interaction, maturation, and freeze–thaw methods. The formulations were characterised by size, drug conjugation efficiency, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). Further analysis of optimised hydrogels was performed, including X-ray diffraction (XRD), rheology, gel fraction and swelling ability, in vitro drug release, and in vitro macrophage prostaglandin E2 (PGE2) production testing. The effects of ibuprofen’s electrostatic interaction with a lipid or polymer on the physicochemical and dissolution characterisation of ibuprofen hydrogels were evaluated. The results showed that the S3 (with lipid conjugation) hydrogel provided higher conjugation efficiency and prolonged drug release compared with the S6 hydrogel.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Michelle Andrade Souza ◽  
Karine Yamamura Sakamoto ◽  
Luiz Henrique Capparelli Mattoso

Electrospun fibers are explored as a new system for controlled drug delivery. Novel techniques capable of obtaining polymer nanofibers have been reported in the literature. They include solution blow spinning (SBS), which is a technique to produce polymer nanofibers in the same range as electrospinning, using pressurized gas instead of high voltage. The present study investigates release characteristics of diclofenac sodium encapsulated at three concentrations (5, 10, and 20% w/v) in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers made by electrospinning and SBS and determines the drug’s effect on fiber morphology and structural properties. PHBV nanofibers were characterized using scanning electronic microscopy, differential scanning calorimetry, and X-ray diffraction, and the release profile was examined via UV-Vis spectrophotometry. Both electrospinning and SBS encapsulated diclofenac sodium in PHBV membranes efficiently and effectively. The profile of thein vitrorelease of diclofenac sodium was dependent on drug concentration and temperature. The drug reduced crystallinity and increased flexibility.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 110
Author(s):  
Muhammad Suhail ◽  
Chih-Wun Fang ◽  
Arshad Khan ◽  
Muhammad Usman Minhas ◽  
Pao-Chu Wu

The purpose of the current investigation was to develop chondroitin sulfate/carbopol-co-poly(acrylic acid) (CS/CBP-co-PAA) hydrogels for controlled delivery of diclofenac sodium (DS). Different concentrations of polymers chondroitin sulfate (CS), carbopol 934 (CBP), and monomer acrylic acid (AA) were cross-linked by ethylene glycol dimethylacrylate (EGDMA) in the presence of ammonium peroxodisulfate (APS) (initiator). The fabricated hydrogels were characterized for further experiments. Characterizations such as Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), Powder X-ray diffractometry (PXRD), and Fourier transform infrared spectroscopy (FTIR) were conducted to understand the surface morphology, thermodynamic stability, crystallinity of the drug, ingredients, and developed hydrogels. The swelling and drug release studies were conducted at two different pH mediums (pH 1.2 and 7.4), and pH-dependent swelling and drug release was shown due to the presence of functional groups of both polymers and monomers; hence, greater swelling and drug release was observed at the higher pH (pH 7.4). The percent drug release of the developed system and commercially available product cataflam was compared and high controlled release of the drug from the developed system was observed at both low and high pH. The mechanism of drug release from the hydrogels followed Korsmeyer–Peppas model. Conclusively, the current research work demonstrated that the prepared hydrogel could be considered as a suitable candidate for controlled delivery of diclofenac sodium.


2021 ◽  
Vol 18 ◽  
Author(s):  
Sonia S. Pandey ◽  
Farhinbanu I. Shaikh ◽  
Arti R. Gupta ◽  
Rutvi J. Vaidya

Background: Despite significant biological effects, the clinical use of chrysin has been restricted because of its poor oral bioavailability. Objective: The purpose of the present research was to investigate the targeting potential of Mannose decorated chrysin (5,7- dihydroxyflavone) loaded solid lipid nanocarrier (MC-SLNs) for gastric cancer. Methods: The Chrysin loaded SLNs (C-SLNs) were developed optimized, characterized and further mannosylated. The C-SLNs were developed with high shear homogenizer, optimized with 32 full factorial designs and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) and evaluated for particle size/polydispersity index, zeta-potential, entrapment efficiency, % release and haemolytic toxicity. The ex-vivo cytotoxicity study was performed on gastric cancer (ACG) and normal cell lines. Results: DSC and XRD data predict the chrysin encapsulation in lipid core and FTIR results confirm the mannosylation of C-SLNs. The optimized C-SLNs exhibited a narrow size distribution with a particle size of 285.65 nm. The % Entrapment Efficiency (%EE) and % controlled release were found to be 74.43% and 64.83%. Once C-SLNs were coated with mannose, profound change was observed in dependent variable - increase in the particle size of MC-SLNs (307.1 nm) was observed with 62.87% release and 70.8% entrapment efficiency. Further, the in vitro studies depicted MC- SLNs to be least hemolytic than pure chrysin and C-SLNs. MC-SLNs were most cytotoxic and were preferably taken up ACG tumor cells as evaluated against C-SLNs. Conclusion: These data suggested that the MC-SLNs demonstrated better biocompatibility and targeting efficiency to treat the gastric cancer.


Author(s):  
M. Shah ◽  
D. Patel

Oxcarbazepine has low solubility and low oral bioavailability, so it’s a challenge to formulate suitable dosage form. In this present investigation, to improve the dissolution rate and solubility, skimmed milk is used as a carrier. Physical mixers were prepared using various drugs to carrier ratio and spray drying technology was used to develop solid dispersion with the carrier. Various techniques were used to characterize the solid dispersion immediately after they were made which includes differential scanning calorimetry, scanning electron microscopy, fourier transform infra- red spectroscopy, X-ray diffraction and in-vitro dissolution profiles. The differential scanning calorimetry thermograms of raw drug indicated of its anhydrous crystalline nature. In thermograms of solid dispersion, the characteristic peak was absent suggesting the change from crystalline nature to amorphous form. X-ray diffraction confirmed those results. X-ray diffraction results of raw drug showed highly intense peak characteristic of its crystalline nature where solid dispersion showed less intense, more diffused peak indicating the change in crystalline form. Fourier transforms infra-red spectroscopy studies showed there was no interaction between drug and carrier. Scanning electron microscopy support the amorphous nature of mixer. The whole formulation showed distinct enhancement in the drug release behavior and solubility. The optimum oxcarbazepine to skimmed milk ratio 1:3 enhances the in-vitro drug release by 3.5 fold and also show distinct increase in solubility. It was concluded that for improvement of solubility of poorly water soluble oxcarbazepine, skimmed milk powder as a carrier can be utilize very well.


2021 ◽  
Vol 321 ◽  
pp. 04011
Author(s):  
Navideh Abbasnezhad ◽  
Farid Bakir ◽  
Stéphane Champmartin ◽  
Mohammadali Shirinbayan

Drug-eluting stents implanted in blood vessels are subject to various dynamics of blood flow. In this study, we present the evaluation of a mathematical model considering the effect of flow rate, to simulate the kinetic profiles of drug release (Diclofenac Sodium (DS)) from in-vitro from PLGA films. This model solves a set of non-linear equation for modeling simultaneously the burst, diffusion, swelling and erosion involved in the mechanisms of liberation. The release parameters depending on the flow rate are determined using the corresponding mathematical equations. For the evaluation of the proposed model, test data obtained in our laboratory are used. To quantify DS release from drug-carrier PLGA films, we used the flow-through cell apparatus in a closed-loop. Four flow rate values are applied. For each value, the model-substance liberation kinetics showed an increase in drug released with the flow rate. The simulated release profiles show good agreement with the experimental results. Therefore, the use of this model could provide a practical tool to assess in-vitro drug release profiles from polymer matrices under continuous flow rate constraint, and could help improve the design of drug eluting stents.


Author(s):  
Pravin S Patil ◽  
Shashikant C Dhawale

 Objective: The purpose of the present investigation was to develop a nanosuspension to improve dissolution rate and oral bioavailability of ritonavir.Methods: Extended-release ritonavir loaded nanoparticles were prepared using the polymeric system by nanoprecipitation technique. Further, the effect of Eudragit RL100 (polymeric matrix) and polyvinyl alcohol (surfactant) was investigated on particle size and distribution, drug content, entrapment efficiency, and in vitro drug release from nanosuspension where a strong influence of polymeric contents was observed. Drug-excipient compatibility and amorphous nature of drug in prepared nanoparticles were confirmed by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies, respectively.Results: Hydrophobic portions of Eudragit RL100 could result in enhanced encapsulation efficiency. However, increase in polymer and surfactant contents lead to enlarged particle size proportionately as confirmed by transmission electron microscopy. Nanosuspension showed a significant rise in dissolution rate with complete in vitro drug release as well as higher bioavailability in rats compared to the pure drug.Conclusion: The nanoprecipitation technique used in present research could be further explored for the development of different antiretroviral drug carrier therapeutics.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Rai Muhammad Sarfraz ◽  
Muhammad Rouf Akram ◽  
Muhammad Rizwan Ali ◽  
Asif Mahmood ◽  
Muhammad Usman Khan ◽  
...  

Current research work was carried out for gastro-protective delivery of naproxen sodium. Polyethylene glycol-g-poly (methacrylic acid) nanogels was developed through free radical polymerization technique. Formulation was characterized for swelling behaviour, entrapment efficiency, Fourier transform infrared (FTIR) spectroscopy, Differential scanning calorimetry (DSC), and Thermal Gravimetric Analysis (TGA), Powder X-ray diffraction (PXRD), Zeta size distribution, and Zeta potential measurements, and in-vitro drug release. pH dependent swelling was observed with maximum drug release at higher pH. PXRD studies confirmed the conversion of loaded drug from crystalline to amorphous form while Zeta size measurement showed size reduction. On the basis of these results it was concluded that prepared nanogels proved an effective tool for gastro-protective delivery of naproxen sodium.


2017 ◽  
Vol 73 (4) ◽  
pp. 305-313 ◽  
Author(s):  
Yun-Deng Wu ◽  
Xiao-Lei Zhang ◽  
Xiao-Hong Liu ◽  
Jian Xu ◽  
Mei Zhang ◽  
...  

Apremilast (AP) {systematic name: (S)-2-[1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-4-acetamidoisoindoline-1,3-dione} is an inhibitor of phosphodieasterase-4 (PDE4) and is indicated for the treatment of adult patients with active psoriatic arthritis. The ability of AP to form solvates has been investigated and three solvatomorphs of AP, namely, the AP ethyl acetate hemisolvate, C22H24N2O7S·0.5C4H8O2, the AP toluene hemisolvate, C22H24N2O7S·0.5C7H8, and the AP dichloromethane monosolvate, C22H24N2O7S·CH2Cl2, were obtained. The three AP solvatomorphs were characterized by X-ray powder diffraction, thermogravimetric analysis and differential scanning calorimetry. Single-crystal X-ray diffraction was used to analyze the structures, crystal symmetry, packing modes, stoichiometry and hydrogen-bonding interactions of the solvatomorphs. In addition, dissolution analyses were performed to study the dissolution rates of different AP solvatomorph tablets in vitro and to make comparisons with commercial apremilast tablets (produced by Celgene); all three solvatomorphs showed similar dissolution rates and similar values of the similarity factor f2 in a comparison of their dissolution profiles.


Sign in / Sign up

Export Citation Format

Share Document