Re-entrant spin-glass freezing and magneto-dielectric behaviour of Li3NiRuO5, a layered rock-salt related oxide

2017 ◽  
Vol 5 (21) ◽  
pp. 5163-5169 ◽  
Author(s):  
Sanjay Kumar Upadhyay ◽  
Kartik K. Iyer ◽  
S. Rayaprol ◽  
V. Siruguri ◽  
E. V. Sampathkumaran

We report the results of neutron diffraction, ac and dc magnetization, heat-capacity, complex dielectric permittivity and pyrocurrent measurements on an oxide, Li3NiRuO5, hitherto not paid much attention in the literature.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mily Kundu ◽  
Santanu Pakhira ◽  
Renu Choudhary ◽  
Durga Paudyal ◽  
N. Lakshminarasimhan ◽  
...  

AbstractTernary intermetallic compound $${\text {Pr}}_2 {\text {Co}}_{0.86} {\text {Si}}_{2.88}$$ Pr 2 Co 0.86 Si 2.88 has been synthesized in single phase and characterized by x-ray diffraction, scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDX) analysis, magnetization, heat capacity, neutron diffraction and muon spin rotation/relaxation ($$\mu$$ μ SR) measurements. The polycrystalline compound was synthesized in single phase by introducing necessary vacancies in Co/Si sites. Magnetic, heat capacity, and zero-field neutron diffraction studies reveal that the system undergoes magnetic transition below $$\sim$$ ∼ 4 K. Neutron diffraction measurement further reveals that the magnetic ordering is antiferromagnetic in nature with an weak ordered moment. The high temperature magnetic phase has been attributed to glassy in nature consisting of ferromagnetic clusters of itinerant (3d) Co moments as evident by the development of internal field in zero-field $$\mu$$ μ SR below 50 K. The density-functional theory (DFT) calculations suggest that the low temperature magnetic transition is associated with antiferromagnetic coupling between Pr 4f and Co 3d spins. Pr moments show spin fluctuation along with unconventional orbital moment quenching due to crystal field. The evolution of the symmetry and the crystalline electric field environment of Pr-ions are also studied and compared theoretically between the elemental Pr and when it is coupled with other elements such as Co. The localized moment of Pr 4f and itinerant moment of Co 3d compete with each other below $$\sim$$ ∼ 20 K resulting in an unusual temperature dependence of magnetic coercivity in the system.


Author(s):  
Sema Türkay ◽  
Adem Tataroğlu

AbstractRF magnetron sputtering was used to grow silicon nitride (Si3N4) thin film on GaAs substrate to form metal–oxide–semiconductor (MOS) capacitor. Complex dielectric permittivity (ε*), complex electric modulus (M*) and complex electrical conductivity (σ*) of the prepared Au/Si3N4/p-GaAs (MOS) capacitor were studied in detail. These parameters were calculated using admittance measurements performed in the range of 150 K-350 K and 50 kHz-1 MHz. It is found that the dielectric constant (ε′) and dielectric loss (ε″) value decrease with increasing frequency. However, as the temperature increases, the ε′ and ε″ increased. Ac conductivity (σac) was increased with increasing both temperature and frequency. The activation energy (Ea) was determined by Arrhenius equation. Besides, the frequency dependence of σac was analyzed by Jonscher’s universal power law (σac = Aωs). Thus, the value of the frequency exponent (s) were determined.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Qian Li ◽  
Yun Liu ◽  
Andrew Studer ◽  
Zhenrong Li ◽  
Ray Withers ◽  
...  

We characterized the temperature dependent (~25–200°C) electromechanical properties and crystal structure of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3single crystals usingin situelectrical measurement and neutron diffraction techniques. The results show that the poled crystal experiences an addition phase transition around 120°C whereas such a transition is absent in the unpoled crystal. It is also found that the polar order persists above the maximum dielectric permittivity temperature at which the crystal shows a well-defined antiferroelectric behavior. The changes in the electrical properties and underlying crystal structure are discussed in the paper.


Nano Energy ◽  
2017 ◽  
Vol 40 ◽  
pp. 566-575 ◽  
Author(s):  
Yi Pei ◽  
Qing Chen ◽  
Yu-Chen Xiao ◽  
Li Liu ◽  
Cheng-Yan Xu ◽  
...  

2016 ◽  
Vol 52 ◽  
pp. 161-167 ◽  
Author(s):  
Igor V. Kotelnikov ◽  
Andrey G. Altynnikov ◽  
Anatoly Konstantinovich Mikhailov ◽  
Valentina V. Medvedeva ◽  
Andrey Kozyrev

Author(s):  
Pavels Narica ◽  
Svetlana Pan’kova ◽  
Vladimir Solovyev ◽  
Alexander Vanin ◽  
Mikhail Yanikov

Laser colour-marking method often displace conventional marking techniques. Complicated technology of laser-induced periodic surface structure creation on stainless steel samples allows changing their surface morphology and optical properties, which were studied in this work by atomic force microscopy (AFM), laser scanning microscopy, reflectance spectroscopy and ellipsometry. Reflectance spectra of the samples demonstrate reflectance maxima correlate with the visible colours of the samples and with the extrema in the non-monotonic spectral dependences of the derivative of real part of complex dielectric permittivity extracted from the ellipsometric data. Thus, the most intensive light scattering takes place when the real part of complex dielectric permittivity falls down quickly with changing wavelength. We did not observe any “azimuth anisotropy” in our optical measurements at constant incidence angle: the spectra were the same independently of the light incidence plane orientation (parallel or perpendicular to the previous laser light spot scanning direction). We suppose that this selective resonance-like light scattering is due to the sample surface inhomogeneity, which is the result of previous laser treatment. This assumption agrees with estimations based on laser microscope and AFM images as well as with predictions of Mie theory. Thus, the colours of the samples under study are due to the light scattering by randomly distributed surface species with different sizes. 


Sign in / Sign up

Export Citation Format

Share Document