Catalytic promiscuity of the non-native FPP substrate in the TEAS enzyme: non-negligible flexibility of the carbocation intermediate

2018 ◽  
Vol 20 (22) ◽  
pp. 15061-15073 ◽  
Author(s):  
Fan Zhang ◽  
Yong-Heng Wang ◽  
Xiaowen Tang ◽  
Ruibo Wu

By QM(DFT)/MM MD simulations, it has been revealed that the non-native substrate catalytic promiscuity of TEAS (one of the sesquiterpene cyclases) is mostly attributable to its notable conformational flexibility of the branching intermediate bisabolyl cation.

Crystals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 532
Author(s):  
Jonathan H. Sheehan ◽  
Jarrod A. Smith ◽  
Pradeep S. Pallan ◽  
Terry P. Lybrand ◽  
Martin Egli

The (4′→6′)-linked DNA homolog 2′,3′-dideoxy-β-D-glucopyranosyl nucleic acid (dideoxy-glucose nucleic acid or homo-DNA) exhibits stable self-pairing of the Watson–Crick and reverse-Hoogsteen types, but does not cross-pair with DNA. Molecular modeling and NMR solution studies of homo-DNA duplexes pointed to a conformation that was nearly devoid of a twist and a stacking distance in excess of 4.5 Å. By contrast, the crystal structure of the homo-DNA octamer dd(CGAATTCG) revealed a right-handed duplex with average values for helical twist and rise of ca. 15° and 3.8 Å, respectively. Other key features of the structure were strongly inclined base-pair and backbone axes in the duplex with concomitant base-pair slide and cross-strand stacking, and the formation of a dimer across a crystallographic dyad with inter-duplex base swapping. To investigate the conformational flexibility of the homo-DNA duplex and a potential influence of lattice interactions on its geometry, we used molecular dynamics (MD) simulations of the crystallographically observed dimer of duplexes and an isolated duplex in the solution state. The dimer of duplexes showed limited conformational flexibility, and key parameters such as helical rise, twist, and base-pair slide exhibited only minor fluctuations. The single duplex was clearly more flexible by comparison and underwent partial unwinding, albeit without significant lengthening. Thus, base stacking was preserved in the isolated duplex and two adenosines extruded from the stack in the dimer of duplexes were reinserted into the duplex and pair with Ts in a Hoogsteen mode. Our results confirmed that efficient stacking in homo-DNA seen in the crystal structure of a dimer of duplexes was maintained in the separate duplex. Therefore, lattice interactions did not account for the different geometries of the homo-DNA duplex in the crystal and earlier models that resembled inclined ladders with large base-pair separations that precluded efficient stacking.


2018 ◽  
Author(s):  
Alexander Götz ◽  
Nadine Mylonas ◽  
Philipp Högel ◽  
Mara Silber ◽  
Hannes Heinel ◽  
...  

ABSTRACTIntramembrane cleavage of the β-amyloid precursor protein C99 substrate by γ-secretase is implicated in Alzheimer’s disease pathogenesis. Since conformational flexibility of a di-glycine hinge in the C99 transmembrane domain (TMD) might be critical for γ-secretase cleavage, we mutated one of the glycine residues, G38, to a helix-stabilizing leucine and to a helix-distorting proline. CD, NMR and hydrogen/deuterium exchange measurements as well as MD simulations showed that the mutations distinctly altered the intrinsic structural and dynamical properties of the TMD. However, although helix destabilization/unfolding was not observed at the initial ε-cleavage sites of C99, both mutants impaired γ-secretase cleavage and altered its cleavage specificity. Moreover, helix flexibility enabled by the di-glycine hinge translated to motions of other helix parts. Our data suggest that both local helix stabilization and destabilization in the di-glycine hinge may decrease the occurrence of enzyme-substrate complex conformations required for normal catalysis and that hinge mobility can be conducive for productive substrate-enzyme interactions.


Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 239
Author(s):  
Shalini Yadav ◽  
Vishnudatt Pandey ◽  
Rakesh Kumar Tiwari ◽  
Rajendra Prasad Ojha ◽  
Kshatresh Dutta Dubey

CD4-mimetic HIV-1 entry inhibitors are small sized molecules which imitate similar conformational flexibility, in gp120, to the CD4 receptor. However, the mechanism of the conformational flexibility instigated by these small sized inhibitors is little known. Likewise, the effect of the antibody on the function of these inhibitors is also less studied. In this study, we present a thorough inspection of the mechanism of the conformational flexibility induced by a CD4-mimetic inhibitor, NBD-557, using Molecular Dynamics Simulations and free energy calculations. Our result shows the functional importance of Asn425 in substrate induced conformational dynamics in gp120. The MD simulations of Asn425Gly mutant provide a less dynamic gp120 in the presence of NBD-557 without incapacitating the binding enthalpy of NBD-557. The MD simulations of complexes with the antibody clearly show the enhanced affinity of NBD-557 due to the presence of the antibody, which is in good agreement with experimental Isothermal Titration Calorimetry results (Biochemistry2006, 45, 10973–10980).


2021 ◽  
Vol 22 (21) ◽  
pp. 11529
Author(s):  
Suman Samantray ◽  
Olujide O. Olubiyi ◽  
Birgit Strodel

The increasing recognition of the biochemical importance of glycosaminoglycans (GAGs) has in recent times made them the center of attention of recent research investigations. It became evident that subtle conformational factors play an important role in determining the relationship between the chemical composition of GAGs and their activity. Therefore, a thorough understanding of their structural flexibility is needed, which is addressed in this work by means of all-atom molecular dynamics (MD) simulations. Four major GAGs with different substitution patterns, namely hyaluronic acid as unsulphated GAG, heparan-6-sulphate, chondroitin-4-sulphate, and chondroitin-6-sulphate, were investigated to elucidate the influence of sulphation on the dynamical features of GAGs. Moreover, the effects of increasing NaCl and KCl concentrations were studied as well. Different structural parameters were determined from the MD simulations, in combination with a presentation of the free energy landscape of the GAG conformations, which allowed us to unravel the conformational fingerprints unique to each GAG. The largest effects on the GAG structures were found for sulphation at position 6, as well as binding of the metal ions in the absence of chloride ions to the carboxylate and sulphate groups, which both increase the GAG conformational flexibility.


2021 ◽  
Author(s):  
Lazaros Melidis ◽  
Iain B. Styles ◽  
Michael J. Hannon

MD simulations and Markov state modeling explore induced fit binding of metallo-helicates to bulges in dynamic TAR RNA, reproduce experimental data, show how RNA conformational flexibility is reduced, and give mechanistic insight into insertion.


2016 ◽  
Vol 18 (35) ◽  
pp. 24610-24619
Author(s):  
Juan Torras ◽  
David Zanuy ◽  
David Aradilla ◽  
Carlos Alemán

QM/MM-MD simulations of dendrimers using explicit solvent molecules capture the conformational flexibility and microfluctuations induced by different types of solvents.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Lilia Leisle ◽  
Yanyan Xu ◽  
Eva Fortea ◽  
Sangyun Lee ◽  
Jason D Galpin ◽  
...  

The CLC family comprises H+-coupled exchangers and Cl- channels, and mutations causing their dysfunction lead to genetic disorders. The CLC exchangers, unlike canonical 'ping-pong' antiporters, simultaneously bind and translocate substrates through partially congruent pathways. How ions of opposite charge bypass each other while moving through a shared pathway remains unknown. Here, we use MD simulations, biochemical and electrophysiological measurements to identify two conserved phenylalanine residues that form an aromatic pathway whose dynamic rearrangements enable H+ movement outside the Cl- pore. These residues are important for H+ transport and voltage-dependent gating in the CLC exchangers. The aromatic pathway residues are evolutionarily conserved in CLC channels where their electrostatic properties and conformational flexibility determine gating. We propose that Cl- and H+ move through physically distinct and evolutionarily conserved routes through the CLC channels and transporters and suggest a unifying mechanism that describes the gating mechanism of both CLC subtypes.


2019 ◽  
Author(s):  
Vishnudatt Pandey ◽  
Rakesh Kumar Tiwari ◽  
Rajendra Prasad Ojha ◽  
Kshatresh Dutta Dubey

AbstractCD4-mimetic HIV-1 entry inhibitors are small sized molecules which imitate similar conformational flexibility in gp120 as CD4 receptor, the mechanism of the conformational flexibility instigated by these small sized inhibitors, however, is little known. Likewise, the effect of the antibody on the function of these inhibitors is also less studied. In this study, we present a thorough inspection of the mechanism of the conformational flexibility induced by a CD4-mimetic inhibitor, NBD-557, using Molecular Dynamics Simulations and free energy calculations. Our result shows a functional importance of Asn239 in substrate instigated conformational dynamics in gp120. The MD simulations of Asn239Gly mutant provide a less dynamic gp120 in the presence of NBD-557 without incapacitating the binding enthalpy of NBD-557. The MD simulations of complex with the antibody clearly shows the enhanced affinity of NBD-557 due to the presence of the antibody which is in good agreement with experimental Isothermal Titration Calorimetry results (Biochemistry2006,45, 10973-10980).


2000 ◽  
Vol 653 ◽  
Author(s):  
Celeste Sagui ◽  
Thoma Darden

AbstractFixed and induced point dipoles have been implemented in the Ewald and Particle-Mesh Ewald (PME) formalisms. During molecular dynamics (MD) the induced dipoles can be propagated along with the atomic positions either by interation to self-consistency at each time step, or by a Car-Parrinello (CP) technique using an extended Lagrangian formalism. The use of PME for electrostatics of fixed charges and induced dipoles together with a CP treatment of dipole propagation in MD simulations leads to a cost overhead of only 33% above that of MD simulations using standard PME with fixed charges, allowing the study of polarizability in largemacromolecular systems.


2019 ◽  
Author(s):  
Dimitrios Kolokouris ◽  
Iris Kalenderoglou ◽  
Panagiotis Lagarias ◽  
Antonios Kolocouris

<p>We studied by molecular dynamic (MD) simulations systems including the inward<sub>closed</sub> state of influenza A M2 protein in complex with aminoadamantane drugs in membrane bilayers. We varied the M2 construct and performed MD simulations in M2TM or M2TM with amphipathic helices (M2AH). We also varied the lipid bilayer by changing either the lipid, DMPC or POPC, POPE or POPC/cholesterol (chol), or the lipids buffer size, 10x10 Å<sup>2 </sup>or 20x20 Å<sup>2</sup>. We aimed to suggest optimal system conditions for the computational description of this ion channel and related systems. Measures performed include quantities that are available experimentally and include: (a) the position of ligand, waters and chlorine anion inside the M2 pore, (b) the passage of waters from the outward Val27 gate of M2 S31N in complex with an aminoadamantane-aryl head blocker, (c) M2 orientation, (d) the AHs conformation and structure which is affected from interactions with lipids and chol and is important for membrane curvature and virus budding. In several cases we tested OPLS2005, which is routinely applied to describe drug-protein binding, and CHARMM36 which describes reliably protein conformation. We found that for the description of the ligands position inside the M2 pore, a 10x10 Å<sup>2</sup> lipids buffer in DMPC is needed when M2TM is used but 20x20 Å<sup>2</sup> lipids buffer of the softer POPC; when M2AH is used all 10x10 Å<sup>2</sup> lipid buffers with any of the tested lipids can be used. For the passage of waters at least M2AH with a 10x10 Å<sup>2</sup> lipid buffer is needed. The folding conformation of AHs which is defined from hydrogen bonding interactions with the bilayer and the complex with chol is described well with a 10x10 Å<sup>2</sup> lipids buffer and CHARMM36. </p>


Sign in / Sign up

Export Citation Format

Share Document