A hemithioindigo molecular motor for metal surface attachment

2019 ◽  
Vol 17 (7) ◽  
pp. 1979-1983 ◽  
Author(s):  
Kerstin Hoffmann ◽  
Peter Mayer ◽  
Henry Dube

We report on the synthesis of a hemithioindigo molecular motor bearing thioether feet for metal surface attachment and a comprehensive study of its light induced unidirectional motion in solution.

2020 ◽  
Vol 21 (18) ◽  
pp. 6977
Author(s):  
Jingyu Qin ◽  
Hui Zhang ◽  
Yizhao Geng ◽  
Qing Ji

Kinesin-1 is a typical motile molecular motor and the founding member of the kinesin family. The most significant feature in the unidirectional motion of kinesin-1 is its processivity. To realize the fast and processive movement on the microtubule lattice, kinesin-1 efficiently transforms the chemical energy of nucleotide binding and hydrolysis to the energy of mechanical movement. The chemical and mechanical cycle of kinesin-1 are coupled to avoid futile nucleotide hydrolysis. In this paper, the research on the mechanical pathway of energy transition and the regulating mechanism of the mechanochemical cycle of kinesin-1 is reviewed.


2017 ◽  
Vol 199 (8) ◽  
Author(s):  
Jan Ribbe ◽  
Amy E. Baker ◽  
Sebastian Euler ◽  
George A. O'Toole ◽  
Berenike Maier

ABSTRACT For Pseudomonas aeruginosa, levels of cyclic di-GMP (c-di-GMP) govern the transition from the planktonic state to biofilm formation. Type IV pili (T4P) are crucial determinants of biofilm structure and dynamics, but it is unknown how levels of c-di-GMP affect pilus dynamics. Here, we scrutinized how c-di-GMP affects molecular motor properties and adhesive behavior of T4P. By means of retraction, T4P generated forces of ∼30 pN. Deletion mutants in the proteins with known roles in biofilm formation, swarming motility, and exopolysaccharide (EPS) production (specifically, the diguanylate cyclases sadC and roeA or the c-di-GMP phosphodiesterase bifA) showed only modest effects on velocity or force of T4P retraction. At high levels of c-di-GMP, the production of exopolysaccharides, particularly of Pel, is upregulated. We found that Pel production strongly enhances T4P-mediated surface adhesion of P. aeruginosa, suggesting that T4P-matrix interactions may be involved in biofilm formation by P. aeruginosa. Finally, our data support the previously proposed model of slingshot-like “twitching” motility of P. aeruginosa. IMPORTANCE Type IV pili (T4P) play various important roles in the transition of bacteria from the planktonic state to the biofilm state, including surface attachment and surface sensing. Here, we investigate adhesion, dynamics, and force generation of T4P after bacteria engage a surface. Our studies showed that two critical components of biofilm formation by Pseudomonas aeruginosa, T4P and exopolysaccharides, contribute to enhanced T4P-mediated force generation by attached bacteria. These data indicate a crucial role for the coordinated impact of multiple biofilm-promoting factors during the early stages of attachment to a surface. Our data are also consistent with a previous model explaining why pilus-mediated motility in P. aeruginosa results in characteristic “twitching” behavior.


Author(s):  
F. A. Heckman ◽  
E. Redman ◽  
J.E. Connolly

In our initial publication on this subject1) we reported results demonstrating that contrast is the most important factor in producing the high image quality required for reliable image analysis. We also listed the factors which enhance contrast in order of the experimentally determined magnitude of their effect. The two most powerful factors affecting image contrast attainable with sheet film are beam intensity and KV. At that time we had only qualitative evidence for the ranking of enhancing factors. Later we carried out the densitometric measurements which led to the results outlined below.Meaningful evaluations of the cause-effect relationships among the considerable number of variables in preparing EM negatives depend on doing things in a systematic way, varying only one parameter at a time. Unless otherwise noted, we adhered to the following procedure evolved during our comprehensive study:Philips EM-300; 30μ objective aperature; magnification 7000- 12000X, exposure time 1 second, anti-contamination device operating.


Author(s):  
A. Singh ◽  
A. Dykeman ◽  
J. Jarrelf ◽  
D. C. Villeneuve

Hexachlorobenzene (HCB), a persistent and mobile organochlorine pesticide, occurs in environment. HCB has been shown to be present in human follicular fluid. An objective of the present report, which is part of a comprehensive study on reproductive toxicity of HCB, was to determine the cytologic effects of the compound on ovarian follicles in a primate model.Materials and Methods. Eight Cynomolgus monkeys were housed under controlled conditions at Animal facility of Health and Welfare, Ottawa. Animals were orally administered gelatin capsules containing HCB mixed with glucose in daily dosages of 0.0 or 10 mg/kg b.w. for 90 days; the former was the control group. On the menstrual period following completion of dosing, the monkeys underwent an induction cycle of superovulation. At necropsy, one-half of an ovary from each animal was diced into ca. 2- to 3-mm cubed specimens that were fixed by immersion in 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.3). Subsequent procedures followed to obtain thin sections that were examined in a Hitachi H-7000 electron microscope have been described earlier.


Author(s):  
L.E. Murr ◽  
V. Annamalai

Georgius Agricola in 1556 in his classical book, “De Re Metallica”, mentioned a strange water drawn from a mine shaft near Schmölnitz in Hungary that eroded iron and turned it into copper. This precipitation (or cementation) of copper on iron was employed as a commercial technique for producing copper at the Rio Tinto Mines in Spain in the 16th Century, and it continues today to account for as much as 15 percent of the copper produced by several U.S. copper companies.In addition to the Cu/Fe system, many other similar heterogeneous, electrochemical reactions can occur where ions from solution are reduced to metal on a more electropositive metal surface. In the case of copper precipitation from solution, aluminum is also an interesting system because of economic, environmental (ecological) and energy considerations. In studies of copper cementation on aluminum as an alternative to the historical Cu/Fe system, it was noticed that the two systems (Cu/Fe and Cu/Al) were kinetically very different, and that this difference was due in large part to differences in the structure of the residual, cement-copper deposit.


Author(s):  
D. L. Rohr ◽  
S. S. Hecker

As part of a comprehensive study of microstructural and mechanical response of metals to uniaxial and biaxial deformations, the development of substructure in 1100 A1 has been studied over a range of plastic strain for two stress states.Specimens of 1100 aluminum annealed at 350 C were tested in uniaxial (UT) and balanced biaxial tension (BBT) at room temperature to different strain levels. The biaxial specimens were produced by the in-plane punch stretching technique. Areas of known strain levels were prepared for TEM by lapping followed by jet electropolishing. All specimens were examined in a JEOL 200B run at 150 and 200 kV within 24 to 36 hours after testing.The development of the substructure with deformation is shown in Fig. 1 for both stress states. Initial deformation produces dislocation tangles, which form cell walls by 10% uniaxial deformation, and start to recover to form subgrains by 25%. The results of several hundred measurements of cell/subgrain sizes by a linear intercept technique are presented in Table I.


Author(s):  
F.E. Hossler ◽  
M.I. McKamey ◽  
F.C. Monson

A comprehensive study of the microvasculature of the normal rabbit bladder, revealed unusual "capillary glomeruli" along the lateral walls. Here they are characterized as hemal lymph nodes using light microscopy, SEM, TEM, ink injection, and vascular casting.Bladders were perfused via a cannula placed in the abdominal aorta with either 2% glutaraldehyde in 0.1M cacodylate buffer (pH 7.4) for fixation, 10% India ink in 0.9% saline and 0.1M phosphate (pH 7.4) for vessel tracing, or resin (Mercoximethylmethacrylate: catalyst, 4:1:0.3; Ladd Research Industries) for vascular corrosion casting. Infusion pressure was 100mm Hg. Fixed tissue was sectioned from epon-araldyte resin, and stained with toluidine blue for light microscopy, and lead and uranium for TEM. Ink injected tissue was photographed directly from saline-filled bladders illuminated from below. Resin-filled tissue was macerated in 5% KOH and distilled water. Casts were critical point dried, sputter coated with goldpalladium, and examined by routine SEM at 10 KV.


Author(s):  
A. Elgsaeter ◽  
T. Espevik ◽  
G. Kopstad

The importance of a high rate of temperature decrease (“rapid freezing”) when freezing specimens for freeze-etching has long been recognized1. The two basic methods for achieving rapid freezing are: 1) dropping the specimen onto a metal surface at low temperature, 2) bringing the specimen instantaneously into thermal contact with a liquid at low temperature and subsequently maintaining a high relative velocity between the liquid and the specimen. Over the last couple of years the first method has received strong renewed interest, particularily as the result of a series of important studies by Heuser and coworkers 2,3. In this paper we will compare these two freezing methods theoretically and experimentally.


Author(s):  
Shreya Joshi ◽  
Ms Bhavyaa ◽  
Suhani Gupta ◽  
Lalita Luthra

Blockchain is considered to be a disruptive core technology. Although many researchers have realized the importance of blockchain, but the research of it is still emerging. It is the record-keeping technology behind bitcoin and is one of the hottest and fastest growing skills in the IT sector today. It serves as an immutable ledger which allows transactions to take place in a decentralized man Blockchain-based applications are rising up, covering numerous fields including finance, healthcare, product management, Internet of Things (IoT), and many more. However, there are still some challenges of blockchain technology such as scalability and security problems which need to be overcome. This paper comprises of a comprehensive study of Blockchain technology. We have included here a deep dive into how blockchains work, its architecture, consensus and various applications. Furthermore, technical challenges are briefly listed.


2020 ◽  
pp. 89-96
Author(s):  
Sergei S. Kapitonov ◽  
Alexei S. Vinokurov ◽  
Sergei V. Prytkov ◽  
Sergei Yu. Grigorovich ◽  
Anastasia V. Kapitonova ◽  
...  

The article describes the results of comprehensive study aiming at increase of quality of LED luminaires and definition of the nature of changes in their correlated colour temperature (CCT) in the course of operation. Dependences of CCT of LED luminaires with remote and close location of phosphor for 10 thousand hours of operation in different electric modes were obtained; the results of comparison between the initial and final radiation spectra of the luminaires are presented; using mathematical statistics methods, variation of luminaire CCT over the service period claimed by the manufacturer is forecast; the least favourable electric operation modes with the highest CCT variation observed are defined. The obtained results have confirmed availability of the problem of variation of CCT of LED luminaires during their operation. Possible way of its resolution is application of more qualitative and therefore expensive LEDs with close proximity of phosphor or LEDs with remote phosphor. The article may be interesting both for manufacturers and consumers of LED light sources and lighting devices using them.


Sign in / Sign up

Export Citation Format

Share Document