scholarly journals Wide range temperature-dependent deformation and fracture mechanisms for 8701 under dynamic and static loading

RSC Advances ◽  
2018 ◽  
Vol 8 (26) ◽  
pp. 14293-14299 ◽  
Author(s):  
Hong-fu Guo ◽  
Yan-qing Wu ◽  
Feng-lei Huang

The mechanical properties of 8701 were tested over a wide temperature range of −125 °C to 100 °C using the MTS Landmark hydraulic servo test system and SHPB.

Author(s):  
Akila C. Thenuwara ◽  
Pralav P. Shetty ◽  
Neha Kondekar ◽  
Chuanlong Wang ◽  
Weiyang Li ◽  
...  

A new dual-salt liquid electrolyte is developed that enables the reversible operation of high-energy sodium-metal-based batteries over a wide range of temperatures down to −50 °C.


Vacuum ◽  
2008 ◽  
Vol 83 (2) ◽  
pp. 276-281 ◽  
Author(s):  
A. Bengi ◽  
S. Altındal ◽  
S. Özçelik ◽  
S.T. Agaliyeva ◽  
T.S. Mammadov

1981 ◽  
Vol 12 ◽  
Author(s):  
A. Kolb-Telieps ◽  
B.L. Mordike ◽  
M. Mrowiec

ABSTRACTCu-Nb composite wires were produced from powder, electrolytically coated with tin and annealed to convert the Nb fibres to Nb 3Sn. The content was varied between 10 wt % and 40 wt %. The superconducting properties of the wires were determined. The mechanical properties, tensile strength, yield strength and ductility were measured as a function of volume fraction and deformation over a wide temperature range. The results are compared with those for wires produced by different techniques.


Author(s):  
Takashi Inoue ◽  
Toshiyuki Meshii

The fracture toughness KJc of the material in the ductile to brittle transition temperature (DBTT) range exhibits both test specimen thickness (TST) dependence and temperature dependence. Attention has been paid to the master curve (MC) method, which provides an engineering approach to address these two issues. Although MC is intended to be applied to arbitrary ferritic material whose yield stress is within the range of 275 to 825 MPa, the KJc value must be obtained to determine the material dependent reference temperature T0. The applicable range of MC method is restricted to T0 ± 50 °C. Previous studies indicate that additional pre-tests to obtain T0 are necessary; thus, there might be some unwritten requirement to the test temperature for the KJc temperature dependence prediction in MC method to work effectively. If testing must be conducted for the material of interest at some restricted temperature, a more flexible KJc temperature dependence prediction can possibly be obtained for a wide temperature range in the DBTT range, if the simplified and direct scaling (SDS) method, which predicts fracture “load” from yield stress temperature dependence proposed previously is applied. In this study, the SDS method was applied to two different steels: Cr-Mo steel JIS SCM440 and 0.55% carbon steel JIS S55C. Both tensile and fracture toughness tests were performed over a wide range of temperatures, specifically, −166 to 100 °C for SCM440 and −166 to 20 °C for S55C. The SDS method (i.e., fracture load is proportional to 1/(yield stress)) was initially validated for the specimens in the DBTT range. Finally, a simplified method was proposed and initially validated to predict the KJc temperature dependence, by applying the SDS using the EPRI plastic J functional form.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1457
Author(s):  
Daniela Pilone ◽  
Giovanni Pulci ◽  
Laura Paglia ◽  
Avishek Mondal ◽  
Francesco Marra ◽  
...  

γ-TiAl has been a hot topic of research for more than a few decades now, since it is a potential candidate for high temperature structural applications. In this paper, dispersion strengthening of γ based TiAl alloy, produced by means of centrifugal casting, has been performed to increase its mechanical properties beyond those of standard TiAl alloys. After a careful selection of the alloy composition based on the desired properties, several samples were produced by means of investment casting. This work focused on the effect of Al2O3 nano- and micro-dispersoids on the mechanical properties of the considered TiAl alloy. Microstructural investigations were carried out to study both the alloy microstructure and the Al2O3 dispersion homogeneity. Samples of the produced alloy were subjected to four-point bending tests at different temperatures for evaluating the effect of dispersed particles on mechanical properties. The results of this study were promising and showed that Al2O3 dispersion determined an increase of the mechanical properties at high temperatures. The Young’s modulus was 30% higher than that of the reference alloy in the lower temperature range. Over the temperature range 800–950 °C the dispersion strengthening affected the yield stress by increasing its value of about 20% even at 800 °C. A detailed evaluation of fracture surfaces was carried out to investigate fracture mechanisms.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yin Fan ◽  
Yang Xiang ◽  
Hui-Shen Shen

Negative Poisson’s ratio (NPR), also known as “auxetic”, is a highly desired property in a wide range of future industry applications. By employing molecular dynamics (MD) simulation, metal matrix nanocomposites reinforced by graphene sheets are studied in this paper. In the simulation, single crystal copper with crystal orientation 1 1 0 is selected as the matrix and an embedded-atom method (EAM) potential is used to describe the interaction of copper atoms. An aligned graphene sheet is selected as reinforcement, and a hybrid potential, namely, the Erhart-Albe potential, is used for the interaction between a pair of carbon atoms. The interaction between the carbon atom and copper atom is approximated by the Lennard-Jones (L-J) potential. The simulation results showed that both graphene and copper matrix possess in-plane NPRs. The temperature-dependent mechanical properties of graphene/copper nanocomposites with in-plane NPRs are obtained for the first time.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Whitney C. Lane ◽  
Matthew D. Dunn ◽  
Christina L. Gardner ◽  
L. K. Metthew Lam ◽  
Alan M. Watson ◽  
...  

ABSTRACT Interferon alpha/beta (IFN-α/β) is a critical mediator of protection against most viruses, with host survival frequently impossible in its absence. Many studies have investigated the pathways involved in the induction of IFN-α/β after virus infection and the resultant upregulation of antiviral IFN-stimulated genes (ISGs) through IFN-α/β receptor complex signaling. However, other than examining the effects of genetic deletion of induction or effector pathway components, little is known regarding the functionality of these responses in intact hosts and whether host genetic or environmental factors might influence their potency. Here, we demonstrate that the IFN-α/β response against multiple arthropod-vectored viruses, which replicate over a wide temperature range, is extremely sensitive to fluctuations in temperature, exhibiting reduced antiviral efficacy at subnormal cellular temperatures and increased efficacy at supranormal temperatures. The effect involves both IFN-α/β and ISG upregulation pathways with a major aspect of altered potency reflecting highly temperature-dependent transcription of IFN response genes that leads to altered IFN-α/β and ISG protein levels. Discordantly, signaling steps prior to transcription that were examined showed the opposite effect from gene transcription, with potentiation at low temperature and inhibition at high temperature. Finally, we demonstrate that by lowering the temperature of mice, chikungunya arbovirus replication and disease are exacerbated in an IFN-α/β-dependent manner. This finding raises the potential for use of hyperthermia as a therapeutic modality for viral infections and in other contexts such as antitumor therapy. The increased IFN-α/β efficacy at high temperatures may also reflect an innate immune-relevant aspect of the febrile response. IMPORTANCE The interferon alpha/beta (IFN-α/β) response is a first-line innate defense against arthropod-borne viruses (arboviruses). Arboviruses, such as chikungunya virus (CHIKV), can infect cells and replicate across a wide temperature range due to their replication in both mammalian/avian and arthropod hosts. Accordingly, these viruses can cause human disease in tissues regularly exposed to temperatures below the normal mammalian core temperature, 37°C. We questioned whether temperature variation could affect the efficacy of IFN-α/β responses against these viruses and help to explain some aspects of human disease manifestations. We observed that IFN-α/β efficacy was dramatically lower at subnormal temperatures and modestly enhanced at febrile temperatures, with the effects involving altered IFN-α/β response gene transcription but not IFN-α/β pathway signaling. These results provide insight into the functioning of the IFN-α/β response in vivo and suggest that temperature elevation may represent an immune-enhancing therapeutic modality for a wide variety of IFN-α/β-sensitive infections and pathologies.


Sign in / Sign up

Export Citation Format

Share Document