Rapid growth of large-area single-crystal graphene film by seamless stitching using resolidified copper foil on a molybdenum substrate

2019 ◽  
Vol 7 (31) ◽  
pp. 18373-18379 ◽  
Author(s):  
Yuan Cheng ◽  
Hui Bi ◽  
Xiangli Che ◽  
Wei Zhao ◽  
Dezeng Li ◽  
...  

Single-crystal graphene film growth by the seamless stitching of highly oriented single-crystal graphene domains on a resolidified Cu (111) surface.

1981 ◽  
Vol 4 ◽  
Author(s):  
William G. Hawkins ◽  
Jerry G. Black ◽  
Clifford H. Griffiths

ABSTRACTA CO2 laser beam was used to heat bulk fused silica which had previously defined Si3N4 and Si02 encapsulated LPCVD polysilicon islands (25,μm × 100μm) on its surface. The recrystallization process produces single crystal islands under a wide variety of laser treatment parameters. Under certain conditions, the recrystallized islands exhibit a (100) plane parallel to the substrate. These results are the first demonstration of oriented single crystal thin film growth using island predefinition, which eliminates thermal stress induced microcracking resulting from the mismatch in expansion between silicon and bulk fused silica.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3069
Author(s):  
Zhancheng Li ◽  
Yongna Zhang ◽  
Yinwu Duan ◽  
Deping Huang ◽  
Haofei Shi

Single-crystal Cu not only has high electrical and thermal conductivity, but can also be used as a promising platform for the epitaxial growth of two-dimensional materials. Preparing large-area single-crystal Cu foils from polycrystalline foils has emerged as the most promising technique in terms of its simplicity and effectiveness. However, the studies on transforming polycrystalline foil into large-area single-crystal foil mainly focus on the influence of annealing temperature and strain energy on the recrystallization process of copper foil, while studies on the effect of annealing atmosphere on abnormal grain growth behavior are relatively rare. It is necessary to carry out more studies on the effect of annealing atmosphere on grain growth behavior to understand the recrystallization mechanism of metal. Here, we found that introduction of ethanol in pure argon annealing atmosphere will cause the abnormal grain growth of copper foil. Moreover, the number of abnormally grown grains can be controlled by the concentration of ethanol in the annealing atmosphere. Using this technology, the number of abnormally grown grains on the copper foil can be controlled to single one. This abnormally grown grain will grow rapidly to decimeter-size by consuming the surrounding small grains. This work provides a new perspective for the understanding of the recrystallization of metals, and a new method for the preparation of large-area single-crystal copper foils.


Author(s):  
E. L. Hall ◽  
A. Mogro-Campero ◽  
N. Lewis ◽  
L. G. Turner

There have been a large number of recent studies of the growth of Y-Ba-Cu-O thin films, and these studies have employed a variety of substrates and growth techniques. To date, the highest values of Tc and Jc have been found for films grown by sputtering or coevaporation on single-crystal SrTiO3 substrates, which produces a uniaxially-aligned film with the YBa2Cu3Ox c-axis normal to the film plane. Multilayer growth of films on the same substrate produces a triaxially-aligned film (regions of the film have their c-axis parallel to each of the three substrate <100> directions) with lower values of Jc. Growth of films on a variety of other polycrystalline or amorphous substrates produces randomly-oriented polycrystalline films with low Jc. Although single-crystal SrTiO3 thus produces the best results, this substrate material has a number of undesireable characteristics relative to electronic applications, including very high dielectric constant and a high loss tangent at microwave frequencies. Recently, Simon et al. have shown that LaAlO3 could be used as a substrate for YBaCuO film growth. This substrate is essentially a cubic perovskite with a lattice parameter of 0.3792nm (it has a slight rhombohedral distortion at room temperature) and this material exhibits much lower dielectric constant and microwave loss tangents than SrTiO3. It is also interesting from a film growth standpoint since it has a slightly smaller lattice parameter than YBa2Cu3Ox (a=0.382nm, b=c/3=0.389nm), while SrTiO3 is slightly larger (a=0.3905nm).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuki Tsuruma ◽  
Emi Kawashima ◽  
Yoshikazu Nagasaki ◽  
Takashi Sekiya ◽  
Gaku Imamura ◽  
...  

AbstractPower devices (PD) are ubiquitous elements of the modern electronics industry that must satisfy the rigorous and diverse demands for robust power conversion systems that are essential for emerging technologies including Internet of Things (IoT), mobile electronics, and wearable devices. However, conventional PDs based on “bulk” and “single-crystal” semiconductors require high temperature (> 1000 °C) fabrication processing and a thick (typically a few tens to 100 μm) drift layer, thereby preventing their applications to compact devices, where PDs must be fabricated on a heat sensitive and flexible substrate. Here we report next-generation PDs based on “thin-films” of “amorphous” oxide semiconductors with the performance exceeding the silicon limit (a theoretical limit for a PD based on bulk single-crystal silicon). The breakthrough was achieved by the creation of an ideal Schottky interface without Fermi-level pinning at the interface, resulting in low specific on-resistance Ron,sp (< 1 × 10–4 Ω cm2) and high breakdown voltage VBD (~ 100 V). To demonstrate the unprecedented capability of the amorphous thin-film oxide power devices (ATOPs), we successfully fabricated a prototype on a flexible polyimide film, which is not compatible with the fabrication process of bulk single-crystal devices. The ATOP will play a central role in the development of next generation advanced technologies where devices require large area fabrication on flexible substrates and three-dimensional integration.


2008 ◽  
Vol 254 (23) ◽  
pp. 7838-7842 ◽  
Author(s):  
Shigeo Ohira ◽  
Naoki Arai ◽  
Takayoshi Oshima ◽  
Shizuo Fujita

1991 ◽  
Vol 254 ◽  
Author(s):  
M. Tamura ◽  
S. Aoki

AbstractThe sample preparation procedures which enable us to observe large areas over a few tens of microns in one-dimension of semiconducting heteroepitaxial materials are described. The main principle involves the careful grinding and polishing of samples. In these procedures, another side thinning of the specimen after finishing initial side polishing is carried out using a sample platform by hand throughout all of the following steps. It is shown that for some typical examples of heteroepitaxial films general information concerning the film growth modes and structures, as well as the defect morphologies and natures introduced during growth can be effectively obtained by using the present technique.


Author(s):  
Natalia Porotnikova ◽  
Andrei Farlenkov ◽  
Sergey Naumov ◽  
Maxim Vlasov ◽  
Anna Khodimchuk ◽  
...  

The 16O/18O oxygen exchange kinetics between the gas phase and the oriented single crystal and polycrystalline specimen has been studied; the rates of individual stages of oxygen exchange have been calculated and discussed.


1995 ◽  
Vol 02 (01) ◽  
pp. 109-126 ◽  
Author(s):  
ROBERT J. LAD

This article reviews aspects of the electronic, chemical, and structural properties of metal/oxide and oxide/oxide interfaces which are formed via ultrathin film growth on oxide single-crystal surfaces. The interactions at the interfaces are classified based on the nature of the reaction products, thermodynamic predictions of interfacial reactions, and wetting and adhesion. Then, properties of single-crystal oxide substrates and limitations and difficulties in studying these ceramic systems are discussed. The remainder of the article presents experimental observations for several systems involving both metal and oxide ultrathin film growth on stoichiometric NiO (100), TiO 2(110), and [Formula: see text] surfaces including a discussion of interdiffusion, chemical and electronic interactions, thermal stability, and interfacial impurity effects.


Sign in / Sign up

Export Citation Format

Share Document