Zinc-/copper-substituted dicalcium silicate cement: advanced biomaterials with enhanced osteogenesis and long-term antibacterial properties

2020 ◽  
Vol 8 (5) ◽  
pp. 1060-1070 ◽  
Author(s):  
Feng Zhang ◽  
Mingming Zhou ◽  
Weizhong Gu ◽  
Zheng Shen ◽  
Xiaohui Ma ◽  
...  

Dicalcium silicate (C2S) cements doped with Zn or Cu exhibited appreciable osteogenic activity and prolonged antibacterial potential in comparison with C2S cement.

2021 ◽  
Vol 33 (3) ◽  
pp. 210
Author(s):  
Hendra Dian Adhita Dharsono ◽  
Denny Nurdin ◽  
Fajar Fatriadi ◽  
Yolanda Dwiutami Gondowidjojo ◽  
Ellizabeth Yunita ◽  
...  

Introduction: Streptococcus sanguinis is a commensal microorganism as well as a pioneer colony in forming dental plaque. Oral biofilm formation can be prevented by a mechanical cleaning procedure followed by the use of mouthwash. The current gold standard for mouthwash is chlorhexidine. Nevertheless, it has side effects that are not recommended for long-term use. Previous studies had proven that herbal-based mouthwashes such as basil leaves (Ocimum basilicum) and strawberry fruit (Fragaria x ananassa) have been shown to have antibacterial properties. The effectivity of antibacterial activity phenomenon in combined extracts has been reported in other studies. This research aims to observe the antibacterial potential of the F. x ananassa and O. basilicum extract combinations against S. sanguinis (ATCC 10556). Methods: The sample of this study was a combination of F. x ananassa and O. basilicum extract, which initially screened for their antibacterial activities. Antibacterial activities of F. x ananassa and O. basilicum extracts against S. sanguinis were observed using Kirby Bauer method, while Minimum Inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) by serial microdilution method. The 2% concentration from each extract was combined in 1:1, 1:2, and 2:1 volume ratio variations then tested for inhibitory zones, MIC, and MBC. Results: F. x ananassa extract had 0.125% and 0.25% for MIC and MBC respectively, while O. basilicum extract showed the value of MIC and MBC as 0.031% and 0.063% against S. sanguinis (ATCC 10556). The extract combinations in 1:1, 1:2, and 2:1 volume ratio variations showed 0.016% for MIC and 0.031% for MBC. Conclusions: It was concluded that combining extracts of 2 % F. x ananassa and 2% O. basilicum in various ratios were observably to have the antibacterial potential against S. sanguinis (ATCC 10556).


Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Sara Metwally ◽  
Daniel P. Ura ◽  
Zuzanna J. Krysiak ◽  
Łukasz Kaniuk ◽  
Piotr K. Szewczyk ◽  
...  

Atopic dermatitis (AD) is a chronic, inflammatory skin condition, caused by wide genetic, environmental, or immunologic factors. AD is very common in children but can occur at any age. The lack of long-term treatments forces the development of new strategies for skin regeneration. Polycaprolactone (PCL) is a well-developed, tissue-compatible biomaterial showing also good mechanical properties. In our study, we designed the electrospun PCL patches with controlled architecture and topography for long-term release in time. Hemp oil shows anti-inflammatory and antibacterial properties, increasing also the skin moisture without clogging the pores. It can be used as an alternative cure for patients that do not respond to traditional treatments. In the study, we tested the mechanical properties of PCL fibers, and the hemp oil spreading together with the release in time measured on skin model and human skin. The PCL membranes are suitable material as patches or bandages, characterized by good mechanical properties and high permeability. Importantly, PCL patches showed release of hemp oil up to 55% within 6 h, increasing also the skin moisture up to 25%. Our results confirmed that electrospun PCL patches are great material as oil carriers indicating a high potential to be used as skin patches for AD skin treatment.


CrystEngComm ◽  
2015 ◽  
Vol 17 (2) ◽  
pp. 456-462 ◽  
Author(s):  
C. Tamames-Tabar ◽  
E. Imbuluzqueta ◽  
N. Guillou ◽  
C. Serre ◽  
S. R. Miller ◽  
...  

A novel biocompatible and bioactive zinc azelate metal–organic framework (BioMIL-5) was hydrothermally synthesized with interesting long-term antibacterial properties.


2013 ◽  
Vol 8 (3) ◽  
pp. 155892501300800 ◽  
Author(s):  
Mehrsa Hosseini ◽  
Majid Montazer ◽  
Rogheih Damerchely

Biopolymers are suitable replacement materials for different chemical processes. In this work, silk yarns were treated with different chitosan concentration and then dyed with mono and bi-functional reactive dyes. The color yield, color difference and color fastness to light and washing of the dyed silk yarns were evaluated. Also, the effects of chitosan concentration, type of the reactive dyes on dye uptake of samples were studied. The bi-functional reactive dye has a high adsorption compared to mono-functional ones. The silk yarn treated with 3% chitosan had higher K/S values, washing and light fastness. The effects of chitosan on the antibacterial properties of silk yarns against two kinds of bacteria: Staphylococcus aureus and Escherichia coli were investigated. The treated silk samples were found to have antibacterial potential due to the antibacterial property of chitosan. Scanning electron microscopy (SEM) photographs reveal the deposition of chitosan on the treated yarns. Washing durability, handle properties, and yellowness of treated and dyed samples were also investigated.


2022 ◽  
Vol 13 ◽  
pp. 100176
Author(s):  
Richard Bright ◽  
Daniel Fernandes ◽  
Jonathan Wood ◽  
Dennis Palms ◽  
Anouck Burzava ◽  
...  

2020 ◽  
Vol 7 (5) ◽  
pp. 515-525
Author(s):  
Yuzhu He ◽  
Yahui Jin ◽  
Xiaoxia Ying ◽  
Qiong Wu ◽  
Shenglian Yao ◽  
...  

Abstract The repair of infective bone defects is a great challenge in clinical work. It is of vital importance to develop a kind of bone scaffold with good osteogenic properties and long-term antibacterial activity for local anti-infection and bone regeneration. A porous mineralized collagen (MC) scaffold containing poly(d,l-lactide-co-glycolic acid) (PLGA) microspheres loaded with two antibacterial synthetic peptides, Pac-525 or KSL-W was developed and characterized via scanning electron microscopy (SEM), porosity measurement, swelling and mechanical tests. The results showed that the MC scaffold embedded with smooth and compact PLGA microspheres had a positive effect on cell growth and also had antibacterial properties. Through toxicity analysis, cell morphology and proliferation analysis and alkaline phosphatase evaluation, the antibacterial scaffolds showed excellent biocompatibility and osteogenic activity. The antibacterial property evaluated with Staphylococcus aureus and Escherichia coli suggested that the sustained release of Pac-525 or KSL-W from the scaffolds could inhibit the bacterial growth aforementioned in the long term. Our results suggest that the antimicrobial peptides-loaded MC bone scaffold has good antibacterial and osteogenic activities, thus providing a great promise for the treatment of infective bone defects.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1330 ◽  
Author(s):  
Laisa Cruzetta ◽  
Isadora M. Garcia ◽  
Gabriela de Souza Balbinot ◽  
Amanda S. Motta ◽  
Fabrício M. Collares ◽  
...  

The aim of the present study was to formulate dental adhesives with different concentrations of LiNbO3 and to evaluate their physicochemical and antibacterial properties. A dental adhesive was formulated using methacrylate monomers and photoinitiators and used as a control filler-free group. Subsequently, three experimental adhesives doped with LiNbO3 at different concentrations (1 wt.%, 2 wt.%, and 5 wt.%) were also formulated. All the experimental adhesives were assessed to evaluate the degree of conversion (DC), softening in solvent, immediate and long-term microtensile bond-strength (μ-TBS), radiopacity, ultimate tensile strength, and antibacterial activity. The incorporation of 1 wt.% of LiNbO3 had no negative effect on the DC of the adhesive resin compared to the control group (p > 0.05). We observed a decrease in the percentage of softening in solvent in the group LiNbO3 at 1 wt.% (p < 0.05). The addition of LiNbO3 increased the radiopacity at a concentration above 2 wt.%, and there was also an increase in cohesive strength (p < 0.05). The immediate μ-TBS increased for LiNbO3 at 5 wt.% (p < 0.05), and there was no statistical difference for the other groups compared to the control (p > 0.05). After six months, the group with 5 wt.% still presented the highest μ-TBS (p < 0.05). The adhesives showed no antimicrobial activity (p > 0.05). LiNbO3 was successfully incorporated in dental adhesives, increasing the radiopacity and their resistance to degradation. Although LiNbO3 offered no antibacterial properties, the reliability of LiNbO3 incorporation in the adhesive encourages new tests to better investigate the antimicrobial action of LiNbO3 through temperature variation.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jia-Horng Lin ◽  
Bing-Chiuan Shiu ◽  
Ching-Wen Lou ◽  
Yuan-Jen Chang

In this study, intelligent eco-diapers are made by combining antibacterial yarns coated with quaternary ammonium salts with conductive yarns to improve caretaking for urinary incontinence. The combination of conductive yarns and sensors can detect the moisture content in eco-diapers, and an alarm is sent when moisture is significant. A wireless module is used to send detected signals to a smartphone or tablet PC via the Internet. This concept is used for a scenario in which nurses do not randomly check on patients in a long-term care institution. When used offline, eco-diapers can send caregivers an alarm for the need to change diapers via cell phones. The diameters of the copper and silver-plated copper fibers are 0.08 and 0.10 mm, respectively. Cotton yarns are twisted with copper and silver-plated copper fibers to form the conductive yarns, which are 0.12 mm in diameter. Moreover, 30-count cotton and 150 D nylon yarns are coated with quaternary ammonium salt via dyeing and finishing processes to form antibacterial yarns. In the current study, intelligent eco-diapers are tested for their electrical and antibacterial properties as specified by AATC and JISL test standards.


RSC Advances ◽  
2015 ◽  
Vol 5 (73) ◽  
pp. 59070-59081 ◽  
Author(s):  
E. Albert ◽  
P. A. Albouy ◽  
A. Ayral ◽  
P. Basa ◽  
G. Csík ◽  
...  

This study reveals the connection between the silver-doping method, the resulting nature and amount of the silver dopant together with the structural properties and the long-term antibacterial activity of composite coatings.


2014 ◽  
Vol 69 (5) ◽  
Author(s):  
Pince Salempa ◽  
Alfian Noor ◽  
Tjodi Harlim ◽  
Nunuk Hariani ◽  
Muharram Muharram ◽  
...  

Pterospermum is of plant genus in the Sterculiaceae family, which has never been studied for its secondary metabolite compound. The others species from this genus have long been used in generations of traditional medicine. For example, P. Javanicum has been used to treat dysentery, toothaches and ulcers. From the antibacterial testing carried out on some tissues of Pterospermum subpeltatum by GNA diffusion method,  this plant showed antibacterial potential, especially toward Shigella boydii and Staphylococcus aureus.


Sign in / Sign up

Export Citation Format

Share Document