Hybrid-cell membrane-coated nanocomplex-loaded chikusetsusaponin IVa methyl ester for a combinational therapy against breast cancer assisted by Ce6

2021 ◽  
Vol 9 (8) ◽  
pp. 2991-3004
Author(s):  
Qian Xie ◽  
Yang Liu ◽  
Ying Long ◽  
Zhou Wang ◽  
Sai Jiang ◽  
...  

Hybrid-cell membrane coating nanocomplexes loading chikusetsusaponin IVa methyl ester for combinational therapy against breast cancer assisted with Ce6.

2021 ◽  
Vol 17 (7) ◽  
pp. 1404-1416
Author(s):  
Zhi-Qiang Zhao ◽  
Wei Song ◽  
Xue-Qin Yan ◽  
Jin-Hai Tang ◽  
Jun-Chen Hou ◽  
...  

The development of multidrug resistance (MDR) is a commonly observed phenomenon in many cancer types. It contributed significantly to the poor outcome of many currently available chemotherapies. Considering autophagy as one of the most important physiological process in cancer progression, we thereby proposed an anti-autophagy siRNA and doxorubicin (Dox) co-delivery system (MC/D-siR) to combat MDR breast cancer using sequential construction. Our results demonstrated the potential of MC/D-siR to effectively transfect the loaded siRNA to result in significant downregulation of intracellular autophagy level in MCF-7/Adr (Dox resistance MCF-7 cell line) cells, which in turn cut off the ATP supply and to reverse the MDR and potentiated accumulated drug retention in cells. As a result, MC/D-siR showed much elevated anticancer benefits than single loaded platforms (MC/Dox or MC/siRNA), indicating the ability for effective MDR cancer treatment through the combination of autophagy regulation and chemotherapy.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3428
Author(s):  
Chaojie Zhu ◽  
Junkai Ma ◽  
Zhiheng Ji ◽  
Jie Shen ◽  
Qiwen Wang

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, causing approximately 17.9 million deaths annually, an estimated 31% of all deaths, according to the WHO. CVDs are essentially rooted in atherosclerosis and are clinically classified into coronary heart disease, stroke and peripheral vascular disorders. Current clinical interventions include early diagnosis, the insertion of stents, and long-term preventive therapy. However, clinical diagnostic and therapeutic tools are subject to a number of limitations including, but not limited to, potential toxicity induced by contrast agents and unexpected bleeding caused by anti-platelet drugs. Nanomedicine has achieved great advancements in biomedical area. Among them, cell membrane coated nanoparticles, denoted as CMCNPs, have acquired enormous expectations due to their biomimetic properties. Such membrane coating technology not only helps avoid immune clearance, but also endows nanoparticles with diverse cellular and functional mimicry. In this review, we will describe the superiorities of CMCNPs in treating cardiovascular diseases and their potentials in optimizing current clinical managements.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 394 ◽  
Author(s):  
Viktor Maurer ◽  
Selin Altin ◽  
Didem Ag Seleci ◽  
Ajmal Zarinwall ◽  
Bilal Temel ◽  
...  

Even though the administration of chemotherapeutic agents such as erlotinib is clinically established for the treatment of breast cancer, its efficiency and the therapy outcome can be greatly improved using RNA interference (RNAi) mechanisms for a combinational therapy. However, the cellular uptake of bare small interfering RNA (siRNA) is insufficient and its fast degradation in the bloodstream leads to a lacking delivery and no suitable accumulation of siRNA inside the target tissues. To address these problems, non-ionic surfactant vesicles (niosomes) were used as a nanocarrier platform to encapsulate Lifeguard (LFG)-specific siRNA inside the hydrophilic core. A preceding entrapment of superparamagnetic iron-oxide nanoparticles (FexOy-NPs) inside the niosomal bilayer structure was achieved in order to enhance the cellular uptake via an external magnetic manipulation. After verifying a highly effective entrapment of the siRNA, the resulting hybrid niosomes were administered to BT-474 cells in a combinational therapy with either erlotinib or trastuzumab and monitored regarding the induced apoptosis. The obtained results demonstrated that the nanocarrier successfully caused a downregulation of the LFG gene in BT-474 cells, which led to an increased efficacy of the chemotherapeutics compared to plainly added siRNA. Especially the application of an external magnetic field enhanced the internalization of siRNA, therefore increasing the activation of apoptotic signaling pathways. Considering the improved therapy outcome as well as the high encapsulation efficiency, the formulated hybrid niosomes meet the requirements for a cost-effective commercialization and can be considered as a promising candidate for future siRNA delivery agents.


2005 ◽  
Vol 11 (12) ◽  
pp. 4357-4364 ◽  
Author(s):  
Huayi Huang ◽  
Jeff Groth ◽  
Khalid Sossey-Alaoui ◽  
Lesleyann Hawthorn ◽  
Stephanie Beall ◽  
...  

Author(s):  
Yanhua Li ◽  
Xia Zhang ◽  
Xiaohan Liu ◽  
Wei Pan ◽  
Na Li ◽  
...  

Chemotherapy is always ineffective against cancer metastasis due to the limited diffusion ability of passive agents into the internal tumor. Herein, we designed a mineralization strategy based on the multifunctional...


2020 ◽  
Vol 112 ◽  
pp. 1-13 ◽  
Author(s):  
Hong-Ying Chen ◽  
Jiang Deng ◽  
Yu Wang ◽  
Cheng-Qiong Wu ◽  
Xian Li ◽  
...  

Neoplasia ◽  
2008 ◽  
Vol 10 (9) ◽  
pp. 1014-IN11 ◽  
Author(s):  
Philippe Kischel ◽  
François Guillonneau ◽  
Bruno Dumont ◽  
Akeila Bellahcène ◽  
Verena Stresing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document