Water deteriorates lubricating oils: removal of water in lubricating oils using a robust superhydrophobic membrane

Nanoscale ◽  
2020 ◽  
Vol 12 (21) ◽  
pp. 11703-11710 ◽  
Author(s):  
Siyang Zhao ◽  
Lu Tie ◽  
Zhiguang Guo ◽  
Jing Li

Lubricating oil failure caused by water is solved by a robust membrane that shows steady performance in regard to extreme water repellency, high-efficiency purification of lubricating oils, and low wear volume even after harsh mechanical damage.

2015 ◽  
Vol 67 (1) ◽  
pp. 75-80 ◽  
Author(s):  
Gabi N Nehme ◽  
Saeed Ghalambor

Purpose – This paper aims to focus on the topics of phosphorus (P) and sulfur (S) in engine oil. Very reproducible boundary lubrication tests were conducted as part of Design of Experiments software to study the behavior of fluorinated catalyst iron fluoride (FeF3) and polytetrafluoroethylene (PTFE) in the development of environment-friendly (reduced P and S) anti-wear additives for future engine oil formulations. Multi-component fully formulated oils were used with and without the addition of PTFE and fluorinated catalyst to characterize and analyze their performance. Design/methodology/approach – A boundary lubrication protocol was used in the DOE tests to study their tribological behavior. Lubricant additives like PTFE and FeF3 catalyst were used at different concentrations to investigate the wear resistance and the time for a full breakdown under extreme loading conditions. Experiments indicated that new sub-micron FeF3 catalyst plays an important role in preventing the breakdown of the tribofilm. Findings – This paper explores the effect of PTFE and FeF3 catalyst on the performance of fully formulated engine oils. The purpose was to develop equations for minimum wear volume and maximum time for full breakdown. Emphasis was, therefore, given to conditions where the additives were working effectively for minimizing zinc dialkyl dithio phosphate (P per cent). Lubricating oils are normally multi-component additivated systems. They contain different additives such as viscosity improvers, detergents, dispersants and antioxidants. It is known that these additives interact at the surface, affecting the function of the lubricating oil. Therefore, it is important to note that the performance with PTFE and FeF3 catalyst was significantly improved when compared to fully formulated commercial oils used alone. Originality/value – Lubricating oils are normally multi-component additivated systems. They contain different additives such as viscosity improvers, detergents, dispersants and antioxidants. It is known that these additives interact at the surface, affecting the function of the lubricating oil. Therefore, it is important to note that the performance with PTFE and FeF3 catalyst was significantly improved when compared to fully formulated commercial oils used alone.


1968 ◽  
Vol 239 (1) ◽  
pp. 33-36 ◽  
Author(s):  
K. S. Anand ◽  
Prabhu Dayal ◽  
O. N. Anand

2019 ◽  
Vol 70 (11) ◽  
pp. 3942-3946
Author(s):  
Gabriel Radulescu ◽  
Diana Cursaru

Obtaining the commercial lubricating oils through an industrial method is a process which has an extensive complexity, requiring a very special attention paid to the final products quality. In this field, any new mixing compound, any new additive and any process improvement is more than welcome. Using the so called optimal mixing recipes � in order to get commercial lubricating oils by the base oils and corresponding additives � is a common way to lower the production cost and increase its quality. This paper proposes an original software tool, developed by the authors, which offers these recipes based on the final mixture properties (explicitly given). The application is built-up around the nonlinear programming and runs under MATLAB� environment. It is a remarkably robust application, with good functionality and accuracy. Its performance is proved both in theory and practice, after laboratory experimental tests.


Author(s):  
Paulina Nowak ◽  
Karolina Kucharska ◽  
Marian Kamiński

Lubricating oils used in machines with an open cutting system, such as a saw or harvester, are applied in forest areas, gardening, in the household, and in urban greenery. During the operation of the device with an open cutting system, the lubricating oil is emitted into the environment. Therefore, the use of an oil base and refining additives of petroleum origin in the content of lubricants is associated with a negative impact on health and the environment. The current legal regulations concerning lubricants applicable in the European Union (EU) assess the degree of biodegradability. Legislation permits the use of biodegradable oils at 60% for a period of 28 days. This means that, in practice, lubricating oil considered to be biodegradable can contain up to 50% of the so-called petroleum oil base. The paper aims to draw public attention to the need to reduce the toxicity and harmful effects, due to their composition, of lubricating oils emitted into the environment on health. The authors discuss the impact of petroleum oil lubricants on soils, groundwater, vegetation, and animals, and the impact of petroleum-origin oil mist on health. An overview of test methods for the biodegradability of lubricating oils is presented, including the Organization for Economic Cooperation and Development (OECD) 301 A–F, 310, and 302 A–D tests, as well as their standard equivalents. The current legal regulations regarding the use and control of lubricating oils emitted into the environment are discussed. Legal provisions are divided according to their area of application. Key issues regarding the biodegradability and toxicity of petroleum fractions in lubricating oils are also addressed. It is concluded that lubricating oils, emitted or potentially emitted into the environment, should contain only biodegradable ingredients in order to eliminate the negative impact on both the environment and health. Total biodegradability should be confirmed by widely applied tests. Therefore, a need to develop and implement low-cost and simple control procedures for each type of lubricating oil, ensuring the possibility of an indisputable conclusion about the presence and total absence of petroleum-derived components in oil, as well as the content of natural ingredients, occurs.


Friction ◽  
2020 ◽  
Author(s):  
Weiwei Tang ◽  
Zhiqiang Jiang ◽  
Baogang Wang ◽  
Yufeng Li

AbstractBlack phosphorus quantum dots (BPQDs), obtained via a typical solution-based top-down method, were used as water-based lubricant additives. BPQDs exhibited remarkable friction reduction and anti-wear properties even at the ultra-low concentration of 0.005 wt%, which reduced the friction coefficient and wear volume of the base liquid by 32.3% and 56.4%, respectively. In addition, the load-supporting capacity of the base liquid increased from 120 N to over 300 N. BPQDs-based additives exhibited a relatively long lifetime at a relatively high load of 80 N. The performance of BPQDs considerably exceeded that of the BP; this may be attributed to their small and uniform particle size, good dispersion stability in water, and high reactivity at the frictional surfaces. The results of the surface wear resistance analysis demonstrated that a robust tribochemical film with a thickness of approximately 90 nm was formed on the rubbing surface lubricated with 0.005 wt% of BPQDs dispersion. Moreover, the film served as a direct evidence of the excellent tribological performance of BPQDs.


2012 ◽  
Vol 23 (2) ◽  
pp. 149-154
Author(s):  
Ancaelena-Eliza Sterpu ◽  
Anca Iuliana Dumitru ◽  
Mihai-Florinel Popa

AbstractHuge amounts of used lubricating oils from automotive sources are disposed of as a harmful waste into the environment. For this reason, means to recover and reuse these wastes need to be found. Problems arising from acid treatment include environmental problems associated with the disposal of acid sludge and spent earth, low product yield (45-65%) and incomplete removal of metals. The processes of re-refining of used lubricating oils depend greatly on the nature of the oil base stock and on the nature and amount of contaminants in the lubricant resulting from operations. The study was carried out on a sample of 15W40 type used oil collected from one automobile. The re-refining process of used oil consists of dehydration, solvent extraction, solvent stripping and vacuum distillation. This study aims to investigate a process of solvent extraction of an alcohol-ketone mixture as a pre-treatment step followed by vacuum distillation at 5 mmHg. The primary step was conducted before the solvent extraction that involves dehydration to remove the water and fuel contaminants from the used oil by vacuum distillation. The solvent extraction and vacuum distillation steps were used to remove higher molecular weight contaminants. The investigated solvent to oil ratios were 2, 3, 4, 5 and 6. The solvent composition is 25% 2-propanol, 50% 1- butanol and 25% butanone or methyl ethyl ketone (MEK). The percentage of oil recovery for the solvent to oil ratio of 6:1 is further improved, but for the ratio values higher than 6:1, operation was considered economically not feasible. Finally, the re-refined oil properties were compared with the commercial virgin lubricating oil properties.


2013 ◽  
Vol 199 ◽  
pp. 188-193 ◽  
Author(s):  
Adam Czaban

One of the most important physical quantities which has an influence on bearings and micro-bearings functioning is the viscosity of a lubricant. The data about a viscosity value dependence on temperature and shear rate are essential for designing sliding friction pairs. In design calculations usually there is assumed that a lubricant is a Newtonian fluid, therefore viscosity is constant over the full range of shear rates. During operation of friction pairs the contamination particles get into a lubricant and this causes that the lubricant becomes a non-Newtonian pseudoplastic or viscoelastic fluid. A similar effect on lubricating oil properties have combustion products or special performance additives. Furthermore, a lubricating oil ages and wears out, i.e. during its operating the initial structure of a particles is destroyed which can cause the change of the oil viscosity and lubricity values. The aim of this work is to determine the dynamic viscosity values in dependence on temperature and shear rate for selected new and used lubricating oils. In this research motor oils for passenger vehicles and tractors were investigated. This paper presents the results of measurements of the viscosity changes, in dependence on shear rate and temperature, made for the new and used oils. One of the investigated oils is Superol CC-40, which was used in four-stroke 4562 cm3 diesel engine for twenty months, which corresponds to 250 hours of operating. The second of investigated oils is Shell Helix Ultra AV-L which was used in four-stroke 2000 cm3 diesel engine for ten months at a distance of 15 000 kilometers. The viscosity measurements for the new and used lubricating oils were made with the Thermo Scientific Haake Mars III rheometer, in the range of temperatures from 10°C to 120°C and of shear rates to 51000 1/s. Moreover, the analysis of wear products, contaminants and additives in the investigated new and used lubricating oils was made with the rotating disc electrode atomic emission spectrometer Spectro Incorporated Spectroil Q100, which gives possibility to determine 22 most common elements which occur in motor, turbine and gear oils. The obtained information will be used in future studies related to hydrodynamic lubrication of slide bearings and micro-bearings. It also may be useful for designing bearings and sliding friction pairs.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ziping Wang ◽  
Xian Xue ◽  
He Yin ◽  
Zhengxuan Jiang ◽  
Yefei Li

Lubricant failure or irrational lubrication is the root cause of industrial equipment failure. By monitoring the distribution of the suspended particles in lubricants, it is possible to discover hidden lubrication problems. After taking the lubricating oil samples of industrial equipment, the oil monitoring technology is used to analyze the particle size distribution and the type and content of the abrasive particles by electrical, magnetic, and optical monitoring techniques. It is necessary to separate the suspended particles in oils with impurities by some method to eliminate potential safety hazards and ensure the reuse efficiency of the lubricant. In this paper, the principles, advantages, and disadvantages of several important oil monitoring methods are described, and new developments in various methods are analyzed. Several typical methods for separation of the suspended particles in purified oils were introduced. The advantages and disadvantages of each process were summarized. The development direction of lubricant monitoring technology was pointed out, and guidance was provided for the separation and online monitoring of the suspended particles in lubricants. Finally, compared with similar review papers, this paper specifically figured out that ultrasonic separation method has the advantages of real time, high efficiency, and no pollution and has important application value for micron-scale particle separation of large precision machines.


2017 ◽  
Vol 8 ◽  
pp. 2662-2668 ◽  
Author(s):  
Olivier Noel ◽  
Aleksandar Vencl ◽  
Pierre-Emmanuel Mazeran

The development of atomic force microscopy (AFM) has allowed wear mechanisms to be investigated at the nanometer scale by means of a single asperity contact generated by an AFM tip and an interacting surface. However, the low wear rate at the nanoscale and the thermal drift require fastidious quantitative measurements of the wear volume for determining wear laws. In this paper, we describe a new, effective, experimental methodology based on circular mode AFM, which generates high frequency, circular displacements of the contact. Under such conditions, the wear rate is significant and the drift of the piezoelectric actuator is limited. As a result, well-defined wear tracks are generated and an accurate computation of the wear volume is possible. Finally, we describe the advantages of this method and we report a relevant application example addressing a Cu/Al2O3 nanocomposite material used in industrial applications.


2014 ◽  
Vol 986-987 ◽  
pp. 110-113
Author(s):  
Wan Gang Zheng ◽  
Shu Jun Wang ◽  
Fan Bin Meng ◽  
Huan Qing Ma ◽  
Yan Shan Li

The paper describes synthesis and evaluation of polymeric additives for improving the flow properties of lubricating oils. The polymer (AAV) was prepared by the free-radical initiated polymerization of methacryl esters (A14) with acrylamide and vinyl acetate. A14 and AAV were characterized by infrared spectroscopy (IR). Three lubricating oils were selected as the test oil samples and the effect of solidification point depressant (ΔSP) with different mass fractions and other physicochemical characteristics of the samples with and without AAV added were investigated. In order to analyze the effect of AAV on the viscosity of lubricating oils, viscosity-temperature curves were plotted. The results showed that AAV not only had a good effect on dropping solidifying point for Yanshan lubricating oils, but also had a good effect on dropping viscosity; what’s more, other physicochemical characteristics of lubricating oil have little changes before and after AAV added.


Sign in / Sign up

Export Citation Format

Share Document