scholarly journals Swelling properties of graphite oxides and graphene oxide multilayered materials

Nanoscale ◽  
2020 ◽  
Vol 12 (41) ◽  
pp. 21060-21093
Author(s):  
Artem Iakunkov ◽  
Alexandr V. Talyzin

Swelling defines graphite oxides and multilayered graphene oxides. It is a key property of GO in applications which involve sorption from vapors, immersion into liquid water or polar solvents and solution based chemical reactions.

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4247 ◽  
Author(s):  
Rita Petrucci ◽  
Isabella Chiarotto ◽  
Leonardo Mattiello ◽  
Daniele Passeri ◽  
Marco Rossi ◽  
...  

Natural methylxanthines, caffeine, theophylline and theobromine, are widespread biologically active alkaloids in human nutrition, found mainly in beverages (coffee, tea, cocoa, energy drinks, etc.). Their detection is thus of extreme importance, and many studies are devoted to this topic. During the last decade, graphene oxide (GO) and reduced graphene oxide (RGO) gained popularity as constituents of sensors (chemical, electrochemical and biosensors) for methylxanthines. The main advantages of GO and RGO with respect to graphene are the easiness and cheapness of synthesis, the notable higher solubility in polar solvents (water, among others), and the higher reactivity towards these targets (mainly due to – interactions); one of the main disadvantages is the lower electrical conductivity, especially when using them in electrochemical sensors. Nonetheless, their use in sensors is becoming more and more common, with the obtainment of very good results in terms of selectivity and sensitivity (up to 5.4 × 10−10 mol L−1 and 1.8 × 10−9 mol L−1 for caffeine and theophylline, respectively). Moreover, the ability of GO to protect DNA and RNA from enzymatic digestion renders it one of the best candidates for biosensors based on these nucleic acids. This is an up-to-date review of the use of GO and RGO in sensors.


2011 ◽  
Vol 287-290 ◽  
pp. 539-543 ◽  
Author(s):  
Wen Shi Ma ◽  
Jun Wen Zhou ◽  
Xiao Dan Lin

Graphene oxide was prepared through Hummers' method,then different reduced graphenes were prepared via reduction of graphene oxide with hydrazine hydrate for 1h、12h and 24h. X-ray photoelectron spectroscopy (XPS) was used for the characterization of graphene oxide and the reduced graphenes. The variation of the contents of carbon in carbon and oxygen functional groups and chemical compositions of graphene oxides were investigated through analysis the content of different carbon atoms in different reduced graphenes. The results showed that the reduction reaction was very fast in the first 1 h, the content of total oxygen bonded carbon atoms decreased from 83.6% to 22.1%, and then after the reduction rate became very slow. After 12h, the content of total oxygen bonded carbon atom is 19.56%, only 2.54% lower than that of 1h’s. At the same time, C-N was introduced in the graphene oxides; this increased the stereo-hindrance for hydrazine hydrate attacking the C-Oxygen groups, thus reduced the reduction rate. After reduction for 24h, there still exists 16.4% oxygen bonded carbon atoms and the total conversion ratio of graphene approaches 70%.


ChemInform ◽  
2015 ◽  
Vol 46 (17) ◽  
pp. no-no
Author(s):  
R. Benny Gerber ◽  
Mychel E. Varner ◽  
Audrey D. Hammerich ◽  
Sampsa Riikonen ◽  
Garold Murdachaew ◽  
...  

2015 ◽  
Vol 54 (9) ◽  
pp. 1122-1131 ◽  
Author(s):  
Jiayou Ji ◽  
Xianghua Yu ◽  
Peng Cheng ◽  
Qiao Zhang ◽  
Feipeng Du ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (15) ◽  
pp. 12657-12668 ◽  
Author(s):  
Pranita Dash ◽  
Tapan Dash ◽  
Tapan Kumar Rout ◽  
Ashok Kumar Sahu ◽  
Surendra Kumar Biswal ◽  
...  

Graphene oxides (GO) with different degrees of oxidation have been prepared by an in-house designed horizontal high energy planetary ball milling process.


2015 ◽  
Vol 14 (03) ◽  
pp. 1550007 ◽  
Author(s):  
K. Kaviyarasu ◽  
C. Maria Magdalane ◽  
E. Manikandan ◽  
M. Jayachandran ◽  
R. Ladchumananandasivam ◽  
...  

Graphene oxide (GO) nanosheets modified with zinc oxide nanocrystals were achieved by a green wet-chemical approach. As-obtained products were characterized by XRD, Raman spectra, XPS, HR-TEM, EDS, PL and Photocatalytic studies. XRD studies indicate that the GO nanosheet have the same crystal structure found in hexagonal form of ZnO . The enhanced Raman spectrum of 2D bands confirmed formation of single layer graphene oxides. The gradual photocatalytic reduction of the GO nanosheet in the GO : ZnO suspension of ethanol was studied by using X-ray photoelectron (XPS) spectroscopy. The nanoscale structures were observed and confirmed using high resolution transmission electron microscopy (HR-TEM). The evolution of the elemental composition, especially the various numbers of layers were determined from energy dispersive X-ray spectra (EDS). PL properties of GO : ZnO nanosheet were found to be dependent on the growth condition and the resultant morphology revealed that GO nanosheet were highly transparent in the visible region. The photocatalytic performance of GO : ZnO nanocomposites was performed under UV irradiation. Therefore, the ZnO nanocrystals in the GO : ZnO composite could be applied in gradual chemical reduction and consequently tuning the electrical conductivity of the graphene oxide nanosheet.


2021 ◽  
Vol 1028 ◽  
pp. 279-284
Author(s):  
Nur Khanifah ◽  
Diyan Unmu Dzujah ◽  
Vika Marcelina ◽  
Rahmat Hidayat ◽  
Fitrilawati ◽  
...  

Reduced graphene oxide (RGO) is promising candidate to be used as an active material of super capacitor electrodes. Graphene oxide (GO) is mostly used as a precursor, therefore it is needed to remove its oxygen containing functional groups. Generally, the RGO films are obtained from Graphene Oxide (GO) films which are then treated using thermal reduction or photo reduction process. We developed a spraying coating method that called as UV oven spraying by combining spraying coating method and photo reduction process. By this deposition method, we can obtain RGO films directly from the GO precursor since deposition and photo reduction steps are taken place at the same time. Level of oxygen removal of the obtained RGO film depends on irradiation intensity and length of irradiation. In this work, we report the effect of varied length of irradiation time on the RGO optical characteristics. We prepared multilayer of RGO films using UV oven spraying technique on quartz substrates from 0.5 mg/ml commercial GO dispersion (Graphenea) with varied the UV irradiation time. We used 125-Watt mercury lamp that was set at distance of 30 cm from substrates. We examined the effect of varied of length of irradiation time on its optical characteristics using UV-Vis Spectroscopy. Level of reduction by provided irradiation time was examined using SEM/EDS measurement.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 802 ◽  
Author(s):  
Chii-Rong Yang ◽  
Shih-Feng Tseng ◽  
Yu-Ting Chen

The chemical oxidation method can be used to mass-produce graphene oxides (GOs) from highly oriented pyrolytic graphite. However, numerous oxygen-containing functional groups (hydroxyl, epoxy, carbonyl, etc.) exist in typical GO surfaces, resulting in serious electrical losses. Hence, GO must be processed into reduced graphene oxide (rGO) by the removal of most of the oxygen-containing functional groups. This research concentrates on the reduction efficiency of GO films that are manufactured using atmospheric-pressure and continuous plasma irradiation. Before and after sessions of plasma irradiation with various irradiation times, shelters, and working distances, the surface, physical, and electrical characteristics of homemade GO and rGO films are measured and analyzed. Experimental results showed that the sheet resistance values of rGO films with silicon or quartz shelters were markedly lower than those of GO films because the rGO films were mostly deprived of oxygen-containing functional groups. The lowest sheet resistance value and the largest carbon-to-oxygen ratio of typical rGO films were approximately 90 Ω/sq and 1.522, respectively. The intensity of the C–O bond peak in typical rGO films was significantly lower than that in GO films. Moreover, the intensity of the C–C bond peak in typical rGO films was considerably higher than that in GO films.


2018 ◽  
Vol 57 ◽  
pp. 02005
Author(s):  
J A Luceño ◽  
A M Díez-Pascual ◽  
R Peña ◽  
P García-Díaz

Graphene (G), an allotrope of carbon with exceptional optical, electronic, thermal and mechanical properties, and its oxidized form graphene oxide (GO), show huge potential for a broad range of applications. In particular, their high conductivity, transparency, flexibility, and abundance make them suitable for polymer solar cells (PSCs). However, their insolubility in common organic solvents hinders their applications. Consequently, novel functionalization approaches are pursued. The present work is devoted to the preparation of hexamethylene diisocyante-functionalized graphene oxide (HDI-GO). The synthesized nanomaterial shows a highly hydrophobic nature and can be dispersed in organic non-polar solvents, hence is a prospective candidate to be combined with conjugated polymers for solar cell applications.


2016 ◽  
Vol 36 (4) ◽  
pp. 399-405 ◽  
Author(s):  
Khalid Nawaz ◽  
Muhammad Ayub ◽  
Noaman Ul-Haq ◽  
M.B. Khan ◽  
Muhammad Bilal Khan Niazi ◽  
...  

Abstract Large area graphene oxide sheets were synthesized, dispersed in water and used as nanofiller for mechanical improvement in terms of Young’s modulus and ultimate tensile strength (UTS) of polyvinyl alcohol (PVA) at low loading. The molecular level dispersion and interfacial interactions between the graphene oxides and polymeric matrix PVA were the real challenges. An excellent improvement in mechanical properties at 0.35 wt% loading was observed. Modulus improved from 1.58 GPa to 2.72 GPa (~71% improvement), UTS improved from 120 MPa to 197 MPa (~65% improvement), and in spite of these improvements, interestingly, there was no fall in elongation at break at this loading.


Sign in / Sign up

Export Citation Format

Share Document