scholarly journals Characteristics of Graphene Oxide Films Reduced by Using an Atmospheric Plasma System

Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 802 ◽  
Author(s):  
Chii-Rong Yang ◽  
Shih-Feng Tseng ◽  
Yu-Ting Chen

The chemical oxidation method can be used to mass-produce graphene oxides (GOs) from highly oriented pyrolytic graphite. However, numerous oxygen-containing functional groups (hydroxyl, epoxy, carbonyl, etc.) exist in typical GO surfaces, resulting in serious electrical losses. Hence, GO must be processed into reduced graphene oxide (rGO) by the removal of most of the oxygen-containing functional groups. This research concentrates on the reduction efficiency of GO films that are manufactured using atmospheric-pressure and continuous plasma irradiation. Before and after sessions of plasma irradiation with various irradiation times, shelters, and working distances, the surface, physical, and electrical characteristics of homemade GO and rGO films are measured and analyzed. Experimental results showed that the sheet resistance values of rGO films with silicon or quartz shelters were markedly lower than those of GO films because the rGO films were mostly deprived of oxygen-containing functional groups. The lowest sheet resistance value and the largest carbon-to-oxygen ratio of typical rGO films were approximately 90 Ω/sq and 1.522, respectively. The intensity of the C–O bond peak in typical rGO films was significantly lower than that in GO films. Moreover, the intensity of the C–C bond peak in typical rGO films was considerably higher than that in GO films.

2019 ◽  
Vol 7 (4) ◽  
Author(s):  
Dimitry Papkov ◽  
Alexander Goponenko ◽  
Owen C. Compton ◽  
Zhi An ◽  
SonBinh T. Nguyen ◽  
...  

Abstract Graphene and graphene oxide attract rapidly growing interest as prospective building blocks for nanotechnology applications and composites. Recently, we showed that a small amount of graphene oxide produced significant templating effects on the structure of continuous carbon nanofibers (CNFs). However, the produced nanofibers had significant nonuniformities that could be detrimental to their mechanical properties. Controlled nanofabrication is critical for obtaining uniform, high-quality nanofibers with tunable diameters and properties. Here, we analyze the effects of graphene oxide type, concentration, and processing parameters on the morphology of continuous graphene oxide/polyacrylonitrile nanofibers produced by electrospinning. Four types of graphene oxides with different average nanoparticle sizes were examined, and the effects of electric field and polymer concentration on nanofiber diameters were analyzed. Good-quality nanofibers were produced with up to 2 wt % graphene oxide in polyacrylonitrile. Uniform nanofibers were obtained for solid content above 9 wt % in dimethylformamide (DMF). Composite nanofibers containing graphene oxide nanoparticles exhibited reduced diameters throughout the polyacrylonitrile concentration range before and after carbonization compared to nanofibers prepared from neat polymer. The obtained results open up a pathway for controlled nanofabrication of uniform CNFs with improved structure for a variety of structural and functional applications.


Surface ◽  
2020 ◽  
Vol 12(27) ◽  
pp. 251-262
Author(s):  
K. V. Voitko ◽  
◽  
O. M. Bakalinska ◽  
Yu. V. Goshovska ◽  
Yu. I. Sementsov ◽  
...  

The catalytic system, that mimets catalase enzyme such as “multilayer graphene oxide /peroxide molecule” in aqueous media was investigated. The main factors that influence on catalyst’s effectiveness were determining. The catalytic activity of as-synthesized multilayered graphene oxides, and their modified forms (oxidized and nitrogen doped) were investigated in the decomposition of hydrogen peroxides at room temperature and physiological pHs by measuring the volume of released gases. A phosphate buffer with a pH of 5 to 8 was chosen as the reaction medium. The original and modified samples were characterized using XPS, TPD-MS, Boehm titration analyses. The effect of surface chemistry on the catalytic reaction proceeding has been studied. It was found that catalysis on the graphene plane is determined by the presence of heteroatoms in their structure. The catalytic process takes place in the kinetic zone over the entire accessible surface of the samples. The active sites of the catalysts contain a large amount of both nitrogen and oxygen-containing functional groups. In addition, the surface of graphene oxide is hydrophilic, which enhances the catalytic reaction in an aqueous medium. It has been established that the rate of hydrogen peroxide decomposition by reduced graphene oxide samples is lower than for samples modified with oxygen and nitrogen. The catalase-like activity of graphene increases in alkaline pH up to 7.8. Studies have shown that samples of multilayer graphenes with a high content of functional groups can be an alternative to the catalase enzyme as a catalyst for the decomposition of hydrogen peroxide in physiological solutions.


2014 ◽  
Vol 989-994 ◽  
pp. 125-129
Author(s):  
Hong Bo Liu ◽  
Wu Ying Zhang ◽  
Feng Lin ◽  
Hong Da Cao

The graphene oxides were prepared form graphite by thermal expansion and ultrasonic dispersion. The structure of graphene oxides was characterized by Fourier transform infrared spectrometer (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD) and Raman spectra. The difference of structure of graphene oxides by two preparation methods was compared. The measurement of FTIR and XRD showed the graphite was completely oxidized. The graphene oxide prepared by thermal expansion would lose large number of active functional groups, such as hydroxyl, carboxyl group, et al. However, the graphene oxide prepared by ultrasonic dispersion can retain these active functional groups. These active functional groups will be benefit to chemically modify the graphene oxides and prepare the polymer/graphene nanocomposites.


2020 ◽  
Author(s):  
Mikhail Trought ◽  
Isobel Wentworth ◽  
Timothy Leftwich ◽  
Kathryn Perrine

The knowledge of chemical functionalization for area selective deposition (ASD) is crucial for designing the next generation heterogeneous catalysis. Surface functionalization by oxidation was studied on the surface of highly oriented pyrolytic graphite (HOPG). The HOPG surface was exposed to with various concentrations of two different acids (HCl and HNO3). We show that exposure of the HOPG surface to the acid solutions produce primarily the same -OH functional group and also significant differences the surface topography. Mechanisms are suggested to explain these strikingly different surface morphologies after surface oxidation. This knowledge can be used to for ASD synthesis methods for future graphene-based technologies.


Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Xu Xu ◽  
Zeping Zhang ◽  
Wenjuan Yao

Graphene and graphene oxide (GO) usually have grain boundaries (GBs) in the process of synthesis and preparation. Here, we “attach” GBs into GO, a new molecular configuration i.e., polycrystalline graphene oxide (PGO) is proposed. This paper aims to provide an insight into the stability and mechanical properties of PGO by using the molecular dynamics method. For this purpose, the “bottom-up” multi-structure-spatial design performance of PGO and the physical mechanism associated with the spatial structure in mixed dimensions (combination of sp2 and sp3) were studied. Also, the effect of defect coupling (GBs and functional groups) on the mechanical properties was revealed. Our results demonstrate that the existence of the GBs reduces the mechanical properties of PGO and show an “induction” role during the tensile fracture process. The presence of functional groups converts in-plane sp2 carbon atoms into out-of-plane sp3 hybrid carbons, causing uneven stress distribution. Moreover, the mechanical characteristics of PGO are very sensitive to the oxygen content of functional groups, which decrease with the increase of oxygen content. The weakening degree of epoxy groups is slightly greater than that of hydroxyl groups. Finally, we find that the mechanical properties of PGO will fall to the lowest values due to the defect coupling amplification mechanism when the functional groups are distributed at GBs.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Nozomi Miyawaki ◽  
Takashi Fukushima ◽  
Takafumi Mizuno ◽  
Miyao Inoue ◽  
Kenji Takisawa

AbstractBiomass may ignite due to biological oxidation and chemical oxidation. If this phenomenon (spontaneous ignition) is controlled, it would be possible to produce biochar at a lower cost without the need for an external heat resource. We investigated if self-heating could be controlled by using sawdust and bark chips. When sawdust and bark chips were used under controlled conditions, the bark chips temperature increased to the torrefaction temperature. The ash content of bark chips was ~ 2%d.b. higher than that of sawdust; consequently, the inorganic substances contained in the bark chips might affect the self-heating. Self-heating was suppressed when inorganic substances were removed by washing with water. Therefore, the inorganic substances in the biomass might have affected self-heating. The inorganic element contents of the bark chips were measured by inductively coupled plasma optical emission spectrometry before and after washing. The potassium content of the bark chips was reduced remarkably by washing, and there was a possible influence of potassium on self-heating. Finally, the effect of moisture content on self-heating was investigated to obtain stable reactivity. Thus, at a moisture content of 40%w.b., a steady self-heating behavior may be realized.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2860
Author(s):  
Bárbara E. Rodríguez ◽  
María Magdalena Armendariz-Ontiveros ◽  
Rodrigo Quezada ◽  
Esther A. Huitrón-Segovia ◽  
Humberto Estay ◽  
...  

The influence of the lateral size and the content of graphene oxide (GO) flakes in specific oxygenate functional groups on the anti-biofouling properties and performance of thin-film composite membrane (TFC) was studied. Three different multidimensional GO samples were prepared with small (500–1200 nm), medium (1200–2300 nm), and large (2300–3600 nm) size distribution, and with different degrees of oxidation (GO3 > GO2 > GO1), varying the concentration of the hydrogen peroxide amount during GO synthesis. GO1 sheets’ length have a heterogeneous size distribution containing all size groups, whilst GO2 is contained in a medium-size group, and GO3 is totally contained within a small-size group. Moreover, GO oxygenate groups were controlled. GO2 and GO3 have hydroxyl and epoxy groups at the basal plane of their sheets. Meanwhile, GO1 presented only hydroxyl groups. GO sheets were incorporated into the polyamide (PA) layer of the TFC membrane during the interfacial polymerization reaction. The incorporation of GO1 produced a modified membrane with excellent bactericidal properties and anti-adhesion capacity, as well as superior desalination performance with high water flow (133% as compared with the unmodified membrane). For GO2 and GO3, despite the significant anti-biofouling effect, a detrimental impact on desalination performance was observed. The high content of large sheets in GO2 and small sheet stacking in GO3 produced an unfavorable impact on the water flow. Therefore, the synergistic effect due to the presence of large- and small-sized GO sheets and high content of OH-functional groups (GO1) made it possible to balance the performance of the membrane.


2020 ◽  
Vol 18 (1) ◽  
pp. 936-942
Author(s):  
Ardhmeri Alija ◽  
Drinisa Gashi ◽  
Rilinda Plakaj ◽  
Admir Omaj ◽  
Veprim Thaçi ◽  
...  

AbstractThis study is focused on the adsorption of hexavalent chromium ions Cr(vi) using graphene oxide (GO). The GO was prepared by chemical oxidation (Hummers method) of graphite particles. The synthesized GO adsorbent was characterized by Fourier transform infrared spectroscopy and UV-Vis spectroscopy. It was used for the adsorption of Cr(vi) ions. The theoretical calculations based on density functional theory and Monte Carlo calculations were used to explore the preferable adsorption site, interaction type, and adsorption energy of GO toward the Cr(vi) ions. Moreover, the most stable adsorption sites were used to calculate and plot noncovalent interactions. The obtained results are important as they give molecular insights regarding the nature of the interaction between GO surface and the adsorbent Cr(vi) ions. The found adsorption energy of −143.80 kcal/mol is indicative of the high adsorptive tendency of this material. The adsorption capacity value of GO toward these ions is q = 240.361 mg/g.


Sign in / Sign up

Export Citation Format

Share Document