Small organic molecule-based nanoparticles with red/near-infrared aggregation-induced emission for bioimaging and PDT/PTT synergistic therapy

2021 ◽  
Vol 5 (1) ◽  
pp. 406-417
Author(s):  
Mengqian Yang ◽  
Jingran Deng ◽  
Huifang Su ◽  
Shuangxi Gu ◽  
Jie Zhang ◽  
...  

An organic small molecule T-BDP with D–A–D structure was designed and synthesized and could self-assemble into nanoparticles with significant AIE performance. Under 635 nm laser irradiation, T-BDP NPs ablate cancer cells through photodynamic/photothermal synergistic effects.

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3061
Author(s):  
Natalia Krasteva ◽  
Dessislava Staneva ◽  
Bela Vasileva ◽  
George Miloshev ◽  
Milena Georgieva

Central focus in modern anticancer nanosystems is given to certain types of nanomaterials such as graphene oxide (GO). Its functionalization with polyethylene glycol (PEG) demonstrates high delivery efficiency and controllable release of proteins, bioimaging agents, chemotherapeutics and anticancer drugs. GO–PEG has a good biological safety profile, exhibits high NIR absorbance and capacity in photothermal treatment. To investigate the bioactivity of PEGylated GO NPs in combination with NIR irradiation on colorectal cancer cells we conducted experiments that aim to reveal the molecular mechanisms of action of this nanocarrier, combined with near-infrared light (NIR) on the high invasive Colon26 and the low invasive HT29 colon cancer cell lines. During reaching cancer cells the phototoxicity of GO–PEG is modulated by NIR laser irradiation. We observed that PEGylation of GO nanoparticles has well-pronounced biocompatibility toward colorectal carcinoma cells, besides their different malignant potential and treatment times. This biocompatibility is potentiated when GO–PEG treatment is combined with NIR irradiation, especially for cells cultured and treated for 24 h. The tested bioactivity of GO–PEG in combination with NIR irradiation induced little to no damages in DNA and did not influence the mitochondrial activity. Our findings demonstrate the potential of GO–PEG-based photoactivity as a nanosystem for colorectal cancer treatment.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5407
Author(s):  
Ahmed Abdullah Ahmed ◽  
Stephen Neidle

The stabilisation of G-quadruplexes (G4s) by small-molecule compounds is an effective approach for causing cell growth arrest, followed by cell death. Some of these compounds are currently being developed for the treatment of human cancers. We have previously developed a substituted naphthalene diimide G4-binding molecule (CM03) with selective potency for pancreatic cancer cells, including gemcitabine-resistant cells. We report here that CM03 and the histone deacetylase (HDAC) inhibitor SAHA (suberanilohydroxamic acid) have synergistic effects at concentrations close to and below their individual GI50 values, in both gemcitabine-sensitive and resistant pancreatic cancer cell lines. Immunoblot analysis showed elevated levels of γ-H2AX and cleaved PARP proteins upon drug combination treatment, indicating increased levels of DNA damage (double-strand break events: DSBs) and apoptosis induction, respectively. We propose that the mechanism of synergy involves SAHA relaxing condensed chromatin, resulting in higher levels of G4 formation. In turn, CM03 can stabilise a greater number of G4s, leading to the downregulation of more G4-containing genes as well as a higher incidence of DSBs due to torsional strain on DNA and chromatin structure.


2016 ◽  
Vol 4 (47) ◽  
pp. 11050-11054 ◽  
Author(s):  
Dejia Wang ◽  
Hongwei Zhao ◽  
Hongjuan Li ◽  
Shiguo Sun ◽  
Yongqian Xu

As a “glue” of water, a small organic molecule with the novel hydrogen-bonding cross-linked aggregation-induced emission (AIE) property was designed to detect trace water, displaying a wide linear range (0–40%, v/v) in most of the organic solvents.


Author(s):  
Ying Zhong ◽  
Naveen Kumar Bejjanki ◽  
Xiangwan Miao ◽  
Huanhuan Weng ◽  
Quanming Li ◽  
...  

Chemotherapy for the treatment of nasopharyngeal carcinoma (NPC) is usually associated with many side effects; therefore, its treatment options have not yet been completely resolved. Improving distribution to the targeted tumor region and enhancing the cellular uptake of drugs can efficiently alleviate the above adverse medical effects. Near-infrared (NIR) laser light-mediated photothermal therapy (PTT) and photodynamic therapy (PDT) are promising strategies for cancer treatment. In the present study, we developed an efficient multifunctional nanocluster with enhanced targeting and aggregation efficiency for PTT and PDT that is composed of a biocompatible folic acid (FA), indocyanine green (ICG) and 2-cyanobenzothiazole (CBT)-functionalized peptide labeled with an aldehyde sodium alginate-modified magnetic iron oxide nanoparticle (ASA-MNP)-based nanocarrier. FA can bind to folate receptors on cancer cell membranes to enhance nanocluster uptake. CBT-modified peptide can react with glutathione (GSH), which is typically present at higher levels in cancer cells, to form intracellular aggregates and increase the local concentration of the nanodrug. In in vitro studies, these nanodrugs displayed the desired uptake capacity by NPC cells and the ability to suppress the growth of cancer cells under laser irradiation. Animal studies validated that these nanodrugs are safe and nontoxic, efficiently accumulate in NPC tumor sites following injection via the caudal vein, and shows superior inhibition of tumor growth in a tumor-bearing mouse model upon near-infrared laser irradiation. The results indicate the potential application of the multifunctional nanoparticles (NPs), which can be used as a new method for the treatment of folate receptor-positive NPC.


RSC Advances ◽  
2014 ◽  
Vol 4 (63) ◽  
pp. 33279-33285 ◽  
Author(s):  
G. D. Sharma ◽  
M. Anil Reddy ◽  
D. V. Ramana ◽  
M. Chandrasekharam

A small organic moleculeCSORG5developed as non fullerene acceptor for BHJ solar cells. The device based on P3HT : CSORG5(1 : 1) spin coated from DIO/THF showed high PCE 2.80% compared to spin coated from THF. The PCE has been further increased to 4.16%, when the TiO2film was inserted between the active layer and Al electrode.


2018 ◽  
Vol 11 (04) ◽  
pp. 1850016 ◽  
Author(s):  
Jie Chen ◽  
Xu Tan ◽  
Shenglin Luo ◽  
Lei Long ◽  
Lang Liu ◽  
...  

Phototherapy, mainly including photodynamic therapy (PDT) and photothermal therapy (PTT), is a noninvasive and effective approach for cancer treatment. Since integration of PDT and PTT for simultaneous synergistic PDT/PTT treatment enables us to improve phototherapeutic efficacy significantly, it has been attracting a lot of investigations in current days. Here, we introduce IR-52, a new mitochondria-targeting near infrared (NIR) fluorescent small molecule, which possesses structure-inherent PTT and PDT synergistic phototherapeutic effects without conjugation to specific ligands. After NIR light irradiation (808[Formula: see text]nm, 2[Formula: see text]W/cm2, 5[Formula: see text]min), both the hyperthermia and excessive singlet oxygen levels were determined when dissolving IR-52 in aqueous solutions. In vitro photoinduced cytotoxicity studies showed significant lower cell viabilities and higher necrotic/apoptotic rates when cancer cells were treated with IR-52 and irradiation, and its’ mitochondrial localization in cancer cells would partially explain its high cytotoxicity. Further in vivo synergetic PDT and PTT effects were demonstrated by high tumor surface temperature and significant inhibition of tumor growth. Our results strongly suggest that IR-52, which possesses excellent photosensitivity, may provide a promising strategy for tumor treatment with decreased side effects.


RSC Advances ◽  
2016 ◽  
Vol 6 (66) ◽  
pp. 61141-61149 ◽  
Author(s):  
Farhad Bani ◽  
Mohsen Adeli ◽  
Soodabeh Movahedi ◽  
Majid Sadeghizadeh

The aim of this study is to develop a nano graphene–polyglycerol–curcumin hybrid capable of simultaneous co-delivery of chemotherapeutic drug and cytotoxic heat to cancer cells by near infrared (NIR) laser irradiation.


2020 ◽  
Author(s):  
Guanchen Zhu ◽  
Kaikai Wang ◽  
Haixiang Qin ◽  
Xiaozhi Zhao ◽  
Wei Chen ◽  
...  

Abstract Chemotherapy is a standard cancer treatment which uses anti-cancer drugs to destroy or slow the growth of cancer cells. However, chemotherapy has limited therapeutic effects in bladder cancer. One of the reasons of this resistance to chemotherapy is that higher levels of glutathione in invasive bladder cancer cells. We have fabricated nanoparticles that respond to high concentrations of glutathione and near-infrared laser irradiation in order to increase the drug accumulation at the tumor sites and combine chemotherapy with photothermal therapy to overcome the challenges of bladder cancer treatment.Methods:The DOX&IR780@PEG-PCL-SS NPs were prepared by co-precipitation method. We investigated the tumor targeting capability of NPs in vitro and in vivo. The orthotopic bladder cancer model in C57BL/6 mice was established for in vivo study and the photothermal effects and therapeutic efficacy of NPs were evaluated.Results:The DOX&IR780@PEG-PCL-SS NPs were synthesized using internal cross-linking strategy to increase the stability of nanoparticles. Nanoparticles can be ingested by tumor cells in a short time. The DOX&IR780@PEG-PCL-SS NPs have dual sensitivity to high levels of glutathione in bladder cancer cells and near-infrared laser irradiation. Glutathione triggers chemical structural changes of nanoparticles and preliminarily releases drugs, Near-infrared laser irradiation can promote the complete release of the drugs from the nanoparticles and induce a photothermal effect, leading to destroying the tumor cells. Given the excellent tumor-targeting ability and negligible toxicity to normal tissue, DOX&IR780@PEG-PCL-SS NPs can greatly increase the concentration of the anti-cancer drugs in tumor cells. The mice treated with DOX&IR780@PEG-PCL-SS NPs have a significant reduction in tumor volume. The DOX&IR780@PEG-PCL-SS NPs can be tracked by in vivo imaging system and have good tumor targeting ability, to facilitate our assessment during the experiment.Conclusion:A nanoparticle delivery system with dual sensitivity to glutathione and near-infrared laser irradiation was developed for delivering IR780 and DOX. Chemo-photothermal synergistic therapy of both primary bladder cancer and their metastases was achieved using this advanced delivery system.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Bing Liu ◽  
Jian Zhou ◽  
Bin Zhang ◽  
Jing Qu

Photothermal therapy is a promising approach for cancer treatment. In our study, we investigate the photothermal effect of different concentrations of the Ag@Fe3O4 nanoparticles on apoptosis and proliferation in the human epithelial ovarian cancer cells SKOV3. Ovarian cancer cells SKOV3 were treated with the Ag@Fe3O4 nanoparticles under an 808 nm near-infrared (NIR) laser irradiation at different concentrations. The cell proliferation was measured by the cell counting kit-8 (CCK-8) assay. The results show that the Ag@Fe3O4 nanoparticles with NIR laser irradiation could markedly inhibit the proliferation of the ovarian cancer cells SKOV3 independent of a concentration-time manner. Meanwhile, the cell morphology was also seriously damaged under the treatment of high-concentration nanoparticles. However, Ag@Fe3O4 nanoparticles have almost no obvious effect on the growth of SKOV3 cells without NIR laser illumination treatment. Therefore, it is reasonable to believe that the Ag@Fe3O4 nanoparticles have promising applications in photothermal treatment of cancer cells.


Sign in / Sign up

Export Citation Format

Share Document