Thermoelectric properties of monolayer GeAsSe and SnSbTe

2020 ◽  
Vol 8 (28) ◽  
pp. 9763-9774
Author(s):  
H. H. Huang ◽  
Xiaofeng Fan ◽  
David J. Singh ◽  
W. T. Zheng

With high power factors, monolayer GeAsSe and SnSbTe with p-type doping have large ZT values at room temperature.

2018 ◽  
Vol 773 ◽  
pp. 145-151
Author(s):  
Min Soo Park ◽  
Gook Hyun Ha ◽  
Hye Young Koo ◽  
Yong Ho Park

The Bi–Te thermoelectric system shows an excellent figure of merit (ZT) near room temperature. Research on increasing the ZT value for n‑type Bi–Te is imperative because the thermoelectric properties of this compound are inferior to those of the p-type material. For this purpose, n-type Bi2Te3-ySey powders with various amounts of Se dopant (0.3 ≤ y ≤ 0.6) were synthesized by a vacuum melting-grinding process to improve the physical properties. The ZT value of the sintered bodies was investigated in the temperature range of 298–423 K with regard to the electrical and thermal characteristics. As the Se content increased, the electrical conductivity decreased owing to a reduction in the carrier concentration, which improved the overall value of ZT. The thermal conductivity clearly decreased as the Se content increased in the temperature range of 298–373 K due to increased alloy scattering, as well as a reduction in the lattice thermal conductivity caused by crystal grain boundary scattering. At room temperature, Bi2Te2.7Se0.3 (y = 0.3) exhibited the highest ZT of 0.85. At increased temperatures, the ZT value was highest for Bi2Te2.55Se0.45 (y = 0.45), indicating that the optimal effect of the Se dopants varies depending on the temperature range.


2019 ◽  
Vol 7 (27) ◽  
pp. 8269-8276 ◽  
Author(s):  
Quansheng Guo ◽  
David Berthebaud ◽  
Jumpei Ueda ◽  
Setsuhisa Tanabe ◽  
Akinobu Miyoshi ◽  
...  

Both n- and p-type binary Cr2+xSe3 were prepared by composition tuning, aiming for thermoelectric applications near room temperature.


2014 ◽  
Vol 115 (3) ◽  
pp. 033709 ◽  
Author(s):  
M. Zervos ◽  
Z. Viskadourakis ◽  
G. Athanasopoulos ◽  
R. Flores ◽  
O. Conde ◽  
...  

2016 ◽  
Vol 42 (2) ◽  
pp. 2960-2968 ◽  
Author(s):  
Cheng-Chung Hsieh ◽  
Chii-Shyang Hwang ◽  
Chia-Hung Kuo

2012 ◽  
Vol 185 ◽  
pp. 94-98
Author(s):  
Arina ◽  
Fan Shermin Chow Hui ◽  
Banu Abdul Bari Shamira ◽  
Ai Lin Chia ◽  
Ye Ko San ◽  
...  

Thermoelectric is an ever evolving field that serves many critical needs (cooling and power generation) in the industry. The key objective of this work is to fabricate Bismuth Telluride (Bi2Te3) thin-films by varying the various process parameters using a radio-frequency (RF) magnetron sputtering disposition technique. Characterization methods such as four point probe resistivity, surface profiler, atomic force microscopy (AFM), X-ray diffraction (XRD), Seebeck coefficient and thermal diffusivity are performed on the N and P-type Bi2Te3films. The samples are analysed for their electrical properties in relation to the evolved microstructures, for how the process parameters of sputtering and annealing affect these changes. The results demonstrate that N-Type film (S2) processed using sputtering parameters of 7mT, 100W, 50sccm of argon flow under room temperature for 30mins with no annealing and the P-Type film processed using sputtering parameters of 7mT, 100W, 60sccm under room temperature for 30mins with institute annealing at 200°C for 2h exhibit desirable thermoelectric properties suitable for cooling application in microelectronic and optoelectronic devices, optimizing their performance and reliability.


2005 ◽  
Vol 886 ◽  
Author(s):  
Ken Kurisaki ◽  
Keita Goto ◽  
Atsuko Kosuga ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

ABSTRACTPolycrystalline-sintered samples of thallium based substances, (Tl2Te)100−x(Sb2Te3)x (x= 0, 1, 5, 10), were prepared by melting Tl2Te and Sb2Te3 ingots followed by annealing in sealed quartz ampoules. The thermoelectric properties were measured from room temperature to around 600 K. The values of the Seebeck coefficient of all samples are positive, indicating a p-type conduction characteristic. The maximum value of the power factor is 6.53×10−4 Wm−1K−2 at 591 K obtained for x= 10 (Tl9SbTe6), which is about one order lower than those of state-of-the-art thermoelectric materials. All samples indicate an extremely low thermal conductivity, for example that of Tl2Te is approximately 0.35 Wm−1K−1 from room temperature to around 600 K. Although the electrical performance of the samples is not so good, the ZT value is relatively high due to the extremely low thermal conductivity. The maximum ZT value is 0.42 at 591 K obtained for Tl9SbTe6.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 971
Author(s):  
Xiaofang Wang ◽  
Yong Lu ◽  
Ziyu Hu ◽  
Xiaohong Shao

For searching both high-performances and better fits for near-room temperature thermoelectric materials, we here carried out a theoretical study on thermoelectric properties and doping regulation of Mg3X2 (X = As, Sb, Bi) by the combined method of first principle calculations and semi-classical Boltzmann theory. The thermoelectric properties of n-type Mg3As2, Mg3Sb2, and Mg3Bi2 were studied, and it was found that the dimensionless figures of merit, zT, are 2.58, 1.38, 0.34, and the p-type ones are 1.39, 0.64, 0.32, respectively. Furthermore, we calculated the lattice thermal conductivity of doped structures and screened out the structures with a relatively low formation energy to study the phonon dispersion and thermal conductivity in Mg3X2 (X = As, Sb, Bi). Finally, high thermoelectric zT and ultralow thermal conductivity of these doped structures was discussed.


RSC Advances ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 3847-3855 ◽  
Author(s):  
Xiaorui Chen ◽  
Yuhong Huang ◽  
Jing Liu ◽  
Hongkuan Yuan ◽  
Hong Chen

Reduced thermal conductivity and enhanced thermoelectric efficiency was demonstrated by Ga substitution for Al at room temperature in p-type V3Al1−xGax.


2015 ◽  
Vol 1774 ◽  
pp. 13-18
Author(s):  
Bahadir Kucukgok ◽  
Babar Hussain ◽  
Chuanle Zhou ◽  
Ian T. Ferguson ◽  
Na Lu

ABSTRACTGaN and its alloys are promising candidates for high temperature thermoelectric (TE) materials due to their high Seebeck coefficient and high thermal and mechanical stability. Moreover, these materials can overcome the toxicity concern of current Te-based TE materials, such as Bi2Te3 and PbTe. These materials have recently shown a higher Seebeck coefficient than that of SiGe in high temperature region because their large bandgap characteristic eliminates the bipolar conduction. In this study, we report the room temperature thermoelectric properties of p-type Mg doped GaN, grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrate with various carrier concentrations. Undoped and n-type GaN are also incorporated with p-type GaN films to make comparison. The structural, optical, electrical, and thermal properties of the samples were examined by X-ray diffraction, photoluminescence, van der Pauw hall-effect, and thermal gradient methods, respectively. The Seebeck coefficient ranging from 710-900µV/K at room temperature of Mg: GaN were observed, which further indicated their potential TE applications.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Aurelie Gueguen ◽  
Pierre Ferdinand Poudeu Poudeu ◽  
Robert Pcionek ◽  
Huijun Kong ◽  
Ctirad Uher ◽  
...  

AbstractThe thermoelectric properties of materials with compositions NaPb18-xSnxMTe20 (M=Sb, Bi, x=0, 3, 5, 9, 13, 16 and 18) were investigated in the temperature range 300-670K. All compositions exhibited p-type behavior over the measured temperature range. Electronic properties and transport were tuned through the manipulation of the Pb/Sn ratio. Increasing the Sn fraction results in an increase in electrical conductivity and a decrease in thermopower. The compositions NaPb13Sn5SbTe20 and NaPb9Sn9SbTe20 show a lattice thermal conductivity of ∼1 W/m/K at room temperature.


Sign in / Sign up

Export Citation Format

Share Document