Dynamic analysis of Porphyromonas gingivalis invasion into blood capillaries during the infection process in host tissues using a vascularized three-dimensional human gingival model

2021 ◽  
Vol 9 (19) ◽  
pp. 6574-6583
Author(s):  
Naoko Sasaki ◽  
Hiroki Takeuchi ◽  
Shiro Kitano ◽  
Shinji Irie ◽  
Atsuo Amano ◽  
...  

Reconstruction of a vascularized gingival 3D model which can be invaded by P. gingivalis through blood capillaries (HGF: human gingival fibroblast, HUVEC: human umbilical vein endothelial cell, IHGE cell: immortalized human gingival epithelial cell).

Soft Matter ◽  
2021 ◽  
Author(s):  
Paul F Salipante ◽  
Steven Hudson ◽  
Stella Alimperti

We use a three-dimensional 3D model blood vessel platform to measure the elasticity and membrane permeability of the endothelial cell layer. The microfluidic platform is connected with a pneumatic pressure...


2015 ◽  
Vol 21 (5-6) ◽  
pp. 1163-1172 ◽  
Author(s):  
Changyong Yuan ◽  
Penglai Wang ◽  
Lifang Zhu ◽  
Waruna Lakmal Dissanayaka ◽  
David William Green ◽  
...  

2008 ◽  
Vol 295 (5) ◽  
pp. H2087-H2097 ◽  
Author(s):  
Hojin Kang ◽  
Kayla J. Bayless ◽  
Roland Kaunas

Endothelial cells are subjected to biochemical and mechanical stimuli, which regulate their angiogenic potential. We determined the synergistic effects of sphingosine-1-phosphate (S1P) and fluid wall shear stress (WSS) on a previously established model of human umbilical vein endothelial cell invasion into three-dimensional collagen matrices. Collagen matrices were incorporated into a parallel-plate flow chamber to apply controlled WSS to the surface of endothelial monolayers over a period of 24 h. Cell invasion required the presence of S1P, with the effects of S1P being enhanced by shear stress to an extent comparable with S1P combined with angiogenic growth factor stimulation. The number of invading cells depended on the magnitude of shear stress, with a maximal induction at a shear stress of ∼5 dyn/cm2, whereas the invasion distance was proportional to the magnitude of shear stress. The enhancement of invasion by 5.3 dyn/cm2 shear stress coincided with elevated phosphorylation of Akt and matrix metalloproteinase (MMP)-2 activation. Furthermore, invasion induced by the combined application of WSS and S1P was attenuated by inhibitors of MMPs (GM6001) and the phosphatidylinositol 3-kinase/Akt signaling pathway (wortmannin). These results provide evidence that shear stress is a positive modulator of S1P-induced endothelial cell invasion into collagen matrices through enhanced Akt and MMP-2 activation.


1995 ◽  
Vol 73 (02) ◽  
pp. 309-317 ◽  
Author(s):  
Dorothy A Beacham ◽  
Miguel A Cruz ◽  
Robert I Handin

SummaryIntroduction of single amino acid substitutions into the C-terminal Arg-Gly-Asp-Ser (RGDS) site of von Willebrand Factor, referred to as RGD mutant vWF, selectively abrogated vWF binding to platelet glycoprotein IIb/IIIa (GpIIb/IIIa, αIIbβ3 and abolished human umbilical vein endothelial cell (HUVEC) spreading, but not attachment, to RGD mutant vWF (Beacham, D. A., Wise, R. J., Turci, S. M. and Handin, R. I. 1992. J. Biol. Chem. 167, 3409-3415). These results suggested that in addition to the vitronectin receptor (VNR, αvβ3), a second endothelial membrane glycoprotein can mediate HUVEC adhesion to vWF. HUVEC attachment to wild-type (WT) and RGD-mutant vWF was reduced by two proteins known to block the vWF-platelet glycoprotein Ib/IX (GpIb/IX) interaction, the monoclonal antibody AS-7 and the recombinant polypeptide, vWF-A1. The addition of cytochalasin B or DNase I to disrupt potential GPIbα-cytoskeletal interactions enhanced the immunoprecipitation of endothelial GPIbα, caused HUVEC to round up, and increased HUVEC adhesion to RGD mutant vWF. These results indicate that while the VNR is the primary adhesion receptor for vWF, endothelial GPIbα can mediate HUVEC attachment to vWF. GpIb-dependent attachment could contribute to HUVEC adhesion under conditions when cell surface expression of the VNR is downregulated, and VNR-dependent adhesion is reduced.


2017 ◽  
Vol 68 (6) ◽  
pp. 1341-1344
Author(s):  
Grigore Berea ◽  
Gheorghe Gh. Balan ◽  
Vasile Sandru ◽  
Paul Dan Sirbu

Complex interactions between stem cells, vascular cells and fibroblasts represent the substrate of building microenvironment-embedded 3D structures that can be grafted or added to bone substitute scaffolds in tissue engineering or clinical bone repair. Human Adipose-derived Stem Cells (hASCs), human umbilical vein endothelial cells (HUVECs) and normal dermal human fibroblasts (NDHF) can be mixed together in three dimensional scaffold free constructs and their behaviour will emphasize their potential use as seeding points in bone tissue engineering. Various combinations of the aforementioned cell lines were compared to single cell line culture in terms of size, viability and cell proliferation. At 5 weeks, viability dropped for single cell line spheroids while addition of NDHF to hASC maintained the viability at the same level at 5 weeks Fibroblasts addition to the 3D construct of stem cells and endothelial cells improves viability and reduces proliferation as a marker of cell differentiation toward osteogenic line.


2021 ◽  
Vol 29 ◽  
pp. 133-140
Author(s):  
Bin Liu ◽  
Shujun Liu ◽  
Guanning Shang ◽  
Yanjie Chen ◽  
Qifeng Wang ◽  
...  

BACKGROUND: There is a great demand for the extraction of organ models from three-dimensional (3D) medical images in clinical medicine diagnosis and treatment. OBJECTIVE: We aimed to aid doctors in seeing the real shape of human organs more clearly and vividly. METHODS: The method uses the minimum eigenvectors of Laplacian matrix to automatically calculate a group of basic matting components that can properly define the volume image. These matting components can then be used to build foreground images with the help of a few user marks. RESULTS: We propose a direct 3D model segmentation method for volume images. This is a process of extracting foreground objects from volume images and estimating the opacity of the voxels covered by the objects. CONCLUSIONS: The results of segmentation experiments on different parts of human body prove the applicability of this method.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1217
Author(s):  
Jang Ho Ha ◽  
Jae Hyun Lim ◽  
Ji Woon Kim ◽  
Hyeon-Yeol Cho ◽  
Seok Geun Jo ◽  
...  

Blended hydrogels play an important role in enhancing the properties (e.g., mechanical properties and conductivity) of hydrogels. In this study, we generated a conductive blended hydrogel, which was achieved by mixing gelatin methacrylate (GelMA) with collagen, and silver nanowire (AgNW). The ratio of GelMA, collagen and AgNW was optimized and was subsequently gelated by ultraviolet light (UV) and heat. The scanning electron microscope (SEM) image of the conductive blended hydrogels showed that collagen and AgNW were present in the GelMA hydrogel. Additionally, rheological analysis indicated that the mechanical properties of the conductive GelMA–collagen–AgNW blended hydrogels improved. Biocompatibility analysis confirmed that the human umbilical vein endothelial cells (HUVECs) encapsulated within the three-dimensional (3D), conductive blended hydrogels were highly viable. Furthermore, we confirmed that the molecule in the conductive blended hydrogel was released by electrical stimuli-mediated structural deformation. Therefore, this conductive GelMA–collagen–AgNW blended hydrogel could be potentially used as a smart actuator for drug delivery applications.


Micromachines ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 3
Author(s):  
Kyo-in Koo ◽  
Andreas Lenshof ◽  
Le Thi Huong ◽  
Thomas Laurell

In the field of engineered organ and drug development, three-dimensional network-structured tissue has been a long-sought goal. This paper presents a direct hydrogel extrusion process exposed to an ultrasound standing wave that aligns fibroblast cells to form a network structure. The frequency-shifted (2 MHz to 4 MHz) ultrasound actuation of a 400-micrometer square-shaped glass capillary that was continuously perfused by fibroblast cells suspended in sodium alginate generated a hydrogel string, with the fibroblasts aligned in single or quadruple streams. In the transition from the one-cell stream to the four-cell streams, the aligned fibroblast cells were continuously interconnected in the form of a branch and a junction. The ultrasound-exposed fibroblast cells displayed over 95% viability up to day 10 in culture medium without any significant difference from the unexposed fibroblast cells. This acoustofluidic method will be further applied to create a vascularized network by replacing fibroblast cells with human umbilical vein endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document