scholarly journals In vivo Active Organometallic-containing Antimycotic Agents

2021 ◽  
Author(s):  
Riccardo Rubbiani ◽  
Tobias Weil ◽  
Noemi Tocci ◽  
Luciano Mastrobuoni ◽  
Severin Jeger ◽  
...  

Fungal infections represent a global problem, notably for immunocompromised, patients in hospital, covid-19 patient wards and care home settings, and the ever-increasing emergence of multidrug resistant fungal strains is a...

2020 ◽  
pp. AAC.01989-20
Author(s):  
Sherman Chu ◽  
Lisa Long ◽  
Thomas S McCormick ◽  
Katyna Borroto-Esoda ◽  
Stephen Barat ◽  
...  

Echinocandins are a first-line therapy for Candida infections through their ability to inhibit the synthesis of polymer ß-(1,3)-D-glucan. However, there has been an emergence of multidrug-resistant fungal species necessitating the development of novel antifungal agents to combat invasive fungal infections. SCY-247, a second-generation glucan synthase inhibitor of the triterpenoid class (fungerps), is currently being developed as a potential therapy option. We determined the pharmacokinetics of SCY-247 following oral (gavage) administration in mice and evaluated the efficacy of SCY-247 in a murine model of hematogenously disseminated candidiasis caused by C. albicans. Plasma concentrations of SCY-247 were measurable through the last collected time point in all dose groups. Mean concentrations of SCY-247 increased with dose levels, with concentrations of SCY-247 higher after multiple doses compared to a single dose. Treatment with SCY-247 resulted in decreased fungal burden and improvement in survival rates against C. albicans disseminated infection. Treatment with 10 mg/kg SCY-247 showed a significant reduction in CFUs compared to the untreated control (3-log decrease on average) (P=0.008). Similarly, SCY-247 40 mg/kg demonstrated a statistically significant reduction in kidney CFUs compared to untreated mice (average log CFU ± SD of 2.38 ± 2.58 vs 6.26 ± 0.51; P=0.001). Mice treated with SCY-247 at 40 mg/kg exhibited a 100% survival rate at the end of the study, contrasted with 62.5% (5 of 8) survival rate in untreated mice. The results of this investigation indicate that SCY-247 is a promising novel anti-fungal agent with activity against Candida infections.


2018 ◽  
Author(s):  
Zeinab Mamouei ◽  
Abdullah Alqarihi ◽  
Shakti Singh ◽  
Shuying Xu ◽  
Michael K. Mansour ◽  
...  

AbstractInvasive fungal infections due to Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans, constitute a substantial threat to hospitalized, immunocompromised patients. Further, the presence of drug-recalcitrant biofilms on medical devices, and emergence of drug-resistant fungi such as Candida auris, introduce treatment challenges with current antifungal drugs. Worse, currently there is no approved drug capable of obviating preformed biofilms which increases the chance of infection relapses. Here, we screened a small molecule Prestwick Chemical Library, consisting of 1200 FDA approved off-patent drugs, against C. albicans, C. auris and A. fumigatus, to identify those that inhibit growth of all three pathogens. Inhibitors were further prioritized for their potency against other fungal pathogens, and their ability to kill preformed biofilms. Our studies identified the bis-biguanide Alexidine dihydrochloride (AXD), as a drug with the highest antifungal and anti-biofilm activity against a diverse range of fungal pathogens. Finally, AXD significantly potentiated the efficacy of fluconazole against biofilms, displayed low mammalian cell toxicity, and eradicated biofilms growing in mice central venous catheters in vivo, highlighting its potential as a pan-antifungal drug.ImportanceThe prevalence of fungal infections has seen a rise in the past decades due to advances in modern medicine leading to an expanding population of device-associated and immunocompromised patients. Furthermore, the spectrum of pathogenic fungi has changed, with the emergence of multi-drug resistant strains such as C. auris. High mortality related to fungal infections point to major limitations of current antifungal therapy, and an unmet need for new antifungal drugs. We screened a library of repurposed FDA approved inhibitors to identify compounds with activities against a diverse range of fungi, in varied phases of growth. The assays identified Alexidine dihydrochloride (AXD) to have pronounced antifungal activity including against preformed biofilms, at concentrations lower than mammalian cell toxicity. AXD potentiated the activity of fluconazole and amphotericin B against Candida biofilms in vitro, and prevented biofilm growth in vivo. Thus AXD has the potential to be developed as a pan-antifungal, anti-biofilm drug.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
Yanan Zhao ◽  
Min Hee Lee ◽  
Padmaja Paderu ◽  
Annie Lee ◽  
Cristina Jimenez-Ortigosa ◽  
...  

ABSTRACT APX001 is a first-in-class, intravenous and orally available, broad-spectrum antifungal agent in clinical development for the treatment of life-threatening invasive fungal infections. The half-life of APX001A, the active moiety of APX001, is significantly shorter in mice than in humans (1.4 to 2.75 h in mice versus 2 to 2.5 days in humans), making the exploration of efficacy in mouse models difficult. After pretreatment with 1-aminobenzotriazole (ABT), a nonspecific cytochrome P450 inhibitor, greatly increased plasma APX001A exposure was observed in mice of different strains and of both genders. As a consequence, 26 mg/kg APX001 plus ABT sterilized kidneys in mice infected with Candida albicans, while APX001 alone at the same dose resulted in a modest burden reduction of only 0.2 log10 CFU/g, relative to the vehicle control. In the presence of ABT, 2 days of once-daily dosing with APX001 at 26 mg/kg also demonstrated significant in vivo efficacy in the treatment of Candida glabrata infections in mice. Potent kidney burden reduction was achieved in mice infected with susceptible, echinocandin-resistant, or multidrug-resistant strains. In contrast, the standard of care (micafungin) was ineffective in treating infections caused by the resistant C. glabrata isolates.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Zeinab Mamouei ◽  
Abdullah Alqarihi ◽  
Shakti Singh ◽  
Shuying Xu ◽  
Michael K. Mansour ◽  
...  

ABSTRACT Invasive fungal infections due to Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans constitute a substantial threat to hospitalized immunocompromised patients. Further, the presence of drug-recalcitrant biofilms on medical devices and emergence of drug-resistant fungi, such as Candida auris, introduce treatment challenges with current antifungal drugs. Worse, currently there is no approved drug capable of obviating preformed biofilms, which increase the chance of infection relapses. Here, we screened a small-molecule New Prestwick Chemical Library, consisting of 1,200 FDA-approved off-patent drugs against C. albicans, C. auris, and A. fumigatus, to identify those that inhibit growth of all three pathogens. Inhibitors were further prioritized for their potency against other fungal pathogens and their ability to kill preformed biofilms. Our studies identified the bis-biguanide alexidine dihydrochloride (AXD) as a drug with the highest antifungal and antibiofilm activity against a diverse range of fungal pathogens. Finally, AXD significantly potentiated the efficacy of fluconazole against biofilms, displayed low mammalian cell toxicity, and eradicated biofilms growing in mouse central venous catheters in vivo, highlighting its potential as a pan-antifungal drug. IMPORTANCE The prevalence of fungal infections has seen a rise in the past decades due to advances in modern medicine leading to an expanding population of device-associated and immunocompromised patients. Furthermore, the spectrum of pathogenic fungi has changed, with the emergence of multidrug-resistant strains such as C. auris. High mortality related to fungal infections points to major limitations of current antifungal therapy and an unmet need for new antifungal drugs. We screened a library of repurposed FDA-approved inhibitors to identify compounds with activities against a diverse range of fungi in varied phases of growth. The assays identified alexidine dihydrochloride (AXD) to have pronounced antifungal activity, including against preformed biofilms, at concentrations lower than mammalian cell toxicity. AXD potentiated the activity of fluconazole and amphotericin B against Candida biofilms in vitro and prevented biofilm growth in vivo. Thus, AXD has the potential to be developed as a pan-antifungal, antibiofilm drug.


2019 ◽  
Vol 9 (3) ◽  
pp. 3912-3918 ◽  

Infectious diseases including bacterial, fungal and tuberculosis are responsible for the suffering of humans worldwide. Based on this observation we predetermined to prepare and five novel lipophilic diarylpropenones (Chalcones) (3a-3e) against tubercular, bacterial and fungal strains. The compounds were prepared by base the catalyzed condensation of 2,4,6-trimethyl acetophenone with substituted aromatic aldehydes, purified by recrystallization and characterized by elemental analysis and IR, 1H NMR, and Mass spectroscopic techniques. Further, the compounds were biologically screened for their antitubercular, antibacterial, and antifungal actions. Results of these activities revealed that the compounds possess potential antifungal and antitubercular activities and poor antibacterial activity. The greater activities against tubercular and fungal strains may be due to the lipophilicity rendered by the three magic methyl groups and halogen atoms. The compounds showed no cytotoxicity against the normal human cell line L02. These compounds may act as new scaffolds for the design and development of new molecules against tubercular and fungal infections. Advanced studies need to be carried out in order to determine their potency in vivo.


2020 ◽  
Vol 15 (3) ◽  
pp. 193-206
Author(s):  
Brognara Lorenzo ◽  
Salmaso Luca ◽  
Mazzotti Antonio ◽  
Di M. Alberto ◽  
Faldini Cesare ◽  
...  

Background: Chronic wounds are commonly associated with polymicrobial biofilm infections. In the last years, the extensive use of antibiotics has generated several antibiotic-resistant variants. To overcome this issue, alternative natural treatments have been proposed, including the use of microorganisms like probiotics. The aim of this manuscript was to review current literature concerning the application of probiotics for the treatment of infected chronic wounds. Methods: Relevant articles were searched in the Medline database using PubMed and Scholar, using the keywords “probiotics” and “wound” and “injuries”, “probiotics” and “wound” and “ulcer”, “biofilm” and “probiotics” and “wound”, “biofilm” and “ulcer” and “probiotics”, “biofilm” and “ulcer” and “probiotics”, “probiotics” and “wound”. Results: The research initially included 253 articles. After removal of duplicate studies, and selection according to specific inclusion and exclusion criteria, 19 research articles were included and reviewed, accounting for 12 in vitro, 8 in vivo studies and 2 human studies (three articles dealing with animal experiments included also in vitro testing). Most of the published studies about the effects of probiotics for the treatment of infected chronic wounds reported a partial inhibition of microbial growth, biofilm formation and quorum sensing. Discussion: The application of probiotics represents an intriguing option in the treatment of infected chronic wounds with multidrug-resistant bacteria; however, current results are difficult to compare due to the heterogeneity in methodology, laboratory techniques, and applied clinical protocols. Lactobacillus plantarum currently represents the most studied strain, showing a positive application in burns compared to guideline treatments, and an additional mean in chronic wound infections. Conclusions: Although preliminary evidence supports the use of specific strains of probiotics in certain clinical settings such as infected chronic wounds, large, long-term clinical trials are still lacking, and further research is needed.


2020 ◽  
Vol 18 ◽  
Author(s):  
Niranjan Kaushik ◽  
Nitin Kumar ◽  
Anoop Kumar ◽  
Vikas Sharma

Background: Fungal infections are opportunistic infections that become a serious problem to human health. Objective: Considering the antifungal potential of triazole nucleus, the study was carried out with the objective to synthesize some novel triazole derivatives with antifungal potential. Method: 1,2,4-triazole derivatives were synthesized via a two step reaction (reported earlier). The first step involves reaction of substituted benzoic acid with thiocarbohydrazide to form 4-amino-3-(substituted phenyl)-5-mercapto-1, 2, 4-triazole derivatives (1a-1k) while in second step, synthesized compounds (1a-1k) were then subsequently treated with substituted acetophenone to yield substituted (4-methoxyphenyl-7H-[1, 2, 4] triazolo [3, 4-b][1,3,4] thiadiazine derivatives (2a-2k). All synthesized compounds were characterized by IR, 1H NMR, and Mass spectral data analysis and were screened for their antifungal properties against different fungal strains i.e. Candida tropicalis (ATCC-13803, ATCC-20913), Candida albicans (ATCC-60193), Candida inconspicua (ATCC-16783) and Candida glabrata (ATCC-90030, ATCC-2001). Results: Compound 2d displayed better percentage inhibition (26.29%, 24.81%) than fluconazole (24.44%, 22.96%) against ATCC-16783, ATCC-2001 fungal strains respectively at 100µg/ml. Compound 2f also displayed better percentage inhibition (28.51%) against ATCC-90030 as compared to fluconazone (27.4%) at 200 µg/ml. Similarly, compounds 2e and 2j also exhibited better antifungal properties than fluconazole at 200µg/ml. Compound 2e was found most potent against ATCC13803 (30.37%) and ATCC-90030 (30.37%) fungal strains as compared to fluconazole (28.14%, 27.4%) at 200 µg/ml respectively whereas compound 2j exhibited better antifungal activity (28.51%) against ATCC-60193 than fluconazole (27.7%) at 200 µg/ml. Conclusion: The results were in accordance with our assertions for triazole derivatives, as all compounds displayed moderate to good antifungal activity.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3005
Author(s):  
Kanchan Bhardwaj ◽  
Ana Sanches Silva ◽  
Maria Atanassova ◽  
Rohit Sharma ◽  
Eugenie Nepovimova ◽  
...  

Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers’ phytochemicals and illustrates their potential role as drugs.


Author(s):  
Chiara Treghini ◽  
Alfonso Dell’Accio ◽  
Franco Fusi ◽  
Giovanni Romano

AbstractChronic lung infections are among the most diffused human infections, being often associated with multidrug-resistant bacteria. In this framework, the European project “Light4Lungs” aims at synthesizing and testing an inhalable light source to control lung infections by antimicrobial photoinactivation (aPDI), addressing endogenous photosensitizers only (porphyrins) in the representative case of S. aureus and P. aeruginosa. In the search for the best emission characteristics for the aerosolized light source, this work defines and calculates the photo-killing action spectrum for lung aPDI in the exemplary case of cystic fibrosis. This was obtained by applying a semi-theoretical modelling with Monte Carlo simulations, according to previously published methodology related to stomach infections and applied to the infected trachea, bronchi, bronchioles and alveoli. In each of these regions, the two low and high oxygen concentration cases were considered to account for the variability of in vivo conditions, together with the presence of endogenous porphyrins and other relevant absorbers/diffusers inside the illuminated biofilm/mucous layer. Furthermore, an a priori method to obtain the “best illumination wavelengths” was defined, starting from maximizing porphyrin and light absorption at any depth. The obtained action spectrum is peaked at 394 nm and mostly follows porphyrin extinction coefficient behavior. This is confirmed by the results from the best illumination wavelengths, which reinforces the robustness of our approach. These results can offer important indications for the synthesis of the aerosolized light source and definition of its most effective emission spectrum, suggesting a flexible platform to be considered in further applications.


Sign in / Sign up

Export Citation Format

Share Document