Pd Doping-weakened Intermediate adsorption to Promote Electrocatalytic Nitrate Reduction on TiO2 Nanoarrays for Ammonia Production and Energy Supply with Zinc-Nitrate Batteries

Author(s):  
Ying Guo ◽  
Rong Zhang ◽  
Shaoce Zhang ◽  
Yuwei Zhao ◽  
Qi Yang ◽  
...  

(Photo)Electrochemical nitrogen reduction for ammonia (NH3) production is an appealing alternative to the traditional high-energy Haber-Bosch reaction. However, the future of this approach is bleak because of the ultralow N2...

Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1515
Author(s):  
Radhouene Doggui ◽  
Hanin Al-Jawaldeh ◽  
Jalila El Ati ◽  
Rawhieh Barham ◽  
Lara Nasreddine ◽  
...  

The Eastern Mediterranean Region (EMR) is experiencing a nutrition transition, characterized by the emergence of overnutrition and micro-nutrient deficiencies. No previous study has comparatively examined nutrient intake in adults across countries in the EMR. This review examined the adequacy of nutrients in adults living in the EMR. Moreover, it analyzed the food balance sheets (FBS) for 1961–2018 to identify the trajectory of energy supply from macro-nutrients in the EMR. A systematic search was conducted from January 2012 to September 2020. Only observational studies were retained with a random sampling design. An assessment of the methodological quality was conducted. Levels of nutrient daily intake and their adequacy compared to the daily reference intake of the Institute of Medicine were reported across the region. No studies were identified for half of the region’s countries. Although nutrient energy intake was satisfactory overall, fat and carbohydrate intake were high. Intake of vitamin D, calcium, potassium, zinc, and magnesium were below that recommended. The analysis of the FBS data allowed for the identification of four linear patterns of trajectories, with countries in the EMR best fitting the ‘high-energy-supply from carbohydrate’ group. This systematic review warrants multi-sectorial commitment to optimize nutrient intake.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chaoyue Sun ◽  
Yu Zhang ◽  
Zhenping Qu ◽  
Jiti Zhou

AbstractTo overcome the problem that ferrous complexes are easily oxidized by O2 and then lose NO binding ability in the chemical absorption-biological reduction (CABR) process, cobalt(II)-histidine [Co(II)His] was proposed as an alternative. To evaluate the applicability of Co(II)His, the effects of CoHis absorbent on the aerobic denitrification by Paracoccus versutus LYM were investigated. Results indicated that His significantly promoted nitrite reduction. The inhibition effects of CoHis absorbent could be substantially alleviated by increasing the initial His/Co2+ to 4 or higher. CoHis with concentrations of 4, 8, 12, 16 and 20 mM presented no distinct effect on nitrite reduction, but slightly inhibited the reduction of nitrate, resulting in longer lag of nitrate reduction, and obviously promoted the growth of strain LYM. In the presence of 5, 10, 15 and 20 mM CoHis absorbent, the main denitrification product was N2 (not less than 95.0%). This study is of significance in verifying the applicability of Co(II)His in the CABR process, and provides a referable CoHis absorbent concentration as 20 mM with an initial His/Co2+ of 4 for the future experiments.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2728
Author(s):  
Chun-Nan Chen ◽  
Chun-Ting Yang

The Taiwanese government has set an energy transition roadmap of 20% renewable energy supply by 2025, including a 20 GW installed PV capacity target, composed of 8 GW rooftop and 12 GW ground-mounted systems. The main trend of feed-in tariffs is downwards, having fallen by 50% over a ten-year period. Predicting the future ten-year equity internal rate of return (IRR) in this study, we examine the investability of PV systems in Taiwan when subsidies and investment costs descend. We have found that the projected subsidies scheme favours investment in small-sized PV systems. Unless the investment costs of medium-sized PV systems fall or subsidies rise over the next decade, investing in medium-sized PV systems will be less attractive. Nonlinear and linear degradation causes slight IRR differences when using higher-reliability modules.


2018 ◽  
Vol 54 (50) ◽  
pp. 6648-6661 ◽  
Author(s):  
Linlin Li ◽  
Siyuan Li ◽  
Yingying Lu

We describe the challenges of high-energy lithium-metal batteries and outline the future directions that are expected to drive their progress.


Author(s):  
Jaewon Jung ◽  
Sungeun Jung ◽  
Junhyeong Lee ◽  
Myungjin Lee ◽  
Hung Soo Kim

The interest in renewable energy to replace fossil fuel is increasing as the problem caused by climate change become more severe. Small hydropower (SHP) is evaluated as a resource with high development value because of its high energy density compared to other renewable energy sources. SHP may be an attractive and sustainable power generation environmental perspective because of its potential to be found in small rivers and streams. The power generation potential could be estimated based on the discharge in the river basin. Since the river discharge depends on the climate conditions, the hydropower generation potential changes sensitively according to climate variability. Therefore, it is necessary to analyze the SHP potential in consideration of future climate change. In this study, the future prospect of SHP potential is simulated for the period of 2021 to 2100 considering the climate change in three hydropower plants of Deoksong, Hanseok, and Socheon stations, Korea. As the results, SHP potential for the near future (2021 to 2040) shows a tendency to be increased and the highest increase is 23.4% at the Deoksong SPH plant. Through the result of future prospect, we have shown that hydroelectric power generation capacity or SHP potential will be increased in the future. Therefore, we believe that it is necessary to revitalize the development of SHP in order to expand the use of renewable energy. Also, a methodology presented in this study could be used for the future prospect of the small hydropower potential.


2003 ◽  
Vol 592 (1) ◽  
pp. 311-320 ◽  
Author(s):  
Hiroyuki Yoshiguchi ◽  
Shigehiro Nagataki ◽  
Katsuhiko Sato

Author(s):  
Peter P. Edwards ◽  
Vladimir L. Kuznetsov

Hydrogen is the simplest and most abundant chemical element in our universe— it is the power source that fuels the Sun and its oxide forms the oceans that cover three quarters of our planet. This ubiquitous element could be part of our urgent quest for a cleaner, greener future. Hydrogen, in association with fuel cells, is widely considered to be pivotal to our world’s energy requirements for the twenty-first century and it could potentially redefine the future global energy economy by replacing a carbon-based fossil fuel energy economy. The principal drivers behind the sustainable hydrogen energy vision are therefore: • the urgent need for a reduction in global carbon dioxide emissions; • the improvement of urban (local) air quality; • the abiding concerns about the long-term viability of fossil fuel resources and the security of our energy supply; • the creation of a new industrial and technological energy base—a base for innovation in the science and technology of a hydrogen/fuel cell energy landscape. The ultimate realization of a hydrogen-based economy could confer enormous environmental and economic benefits, together with enhanced security of energy supply. However, the transition from a carbon-based(fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological, and socio-economic barriers. These include: • low-carbon hydrogen production from clean or renewable sources; • low-cost hydrogen storage; • low-cost fuel cells; • large-scale supporting infrastructure, and • perceived safety problems. In the present chapter we outline the basis of the growing worldwide interest in hydrogen energy and examine some of the important issues relating to the future development of hydrogen as an energy vector. As a ‘snapshot’ of international activity, we note, for example, that Japan regards the development and dissemination of fuel cells and hydrogen technologies as essential: the Ministry of Economy and Industry (METI) has set numerical targets of 5 million fuel cell vehicles and10 million kW for the total power generation by stationary fuel cells by 2020. To meet these targets, METI has allocated an annual budget of some £150 million over four years.


Sign in / Sign up

Export Citation Format

Share Document