Type 3 resistant starch from Canna edulis modulates obesity and obesity-related low-grade systemic inflammation in mice by regulating gut microbiota composition and metabolism

2021 ◽  
Author(s):  
Jiahui Wu ◽  
Minyi Qiu ◽  
Chi Zhang ◽  
Caijuan Zhang ◽  
Nan Wang ◽  
...  

The beneficial effects of Ce-RS3 might derive from gut microbiota changes, which might improve obesity and metabolic inflammation by altering host-microbiota interactions with impacts on the metabolome.

2010 ◽  
Vol 104 (S2) ◽  
pp. S1-S63 ◽  
Author(s):  
Marcel Roberfroid ◽  
Glenn R. Gibson ◽  
Lesley Hoyles ◽  
Anne L. McCartney ◽  
Robert Rastall ◽  
...  

The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, ‘normobiosis’ characterises a composition of the gut ‘ecosystem’ in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to ‘dysbiosis’, in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in ‘prebiotic effects’), defined as: ‘The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.’ Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH, SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies.


2018 ◽  
Vol 24 (27) ◽  
pp. 3162-3171 ◽  
Author(s):  
Rohini Krishna Kota ◽  
Ranga Rao Ambati ◽  
Aswani Kumar Y.V.V. ◽  
Krupanidhi Srirama ◽  
Prakash Narayana Reddy

Background: Gastrointestinal (GI) diseases are a major cause of emergency department visits requiring hospitalizations leading to considerable burden on global economy. Several factors contribute to the onset of gastrointestinal diseases such as pathogens (parasites, bacteria, virus, toxins etc.), autoimmune disorders and severe inflammation of intestine. Objective: One common feature among all these diseases is the dysentery and alteration of gut microbiota composition (gut dysbiosis). Apart from conventional therapies such as antibiotics and ORS supplementation, gut microbiota modulation with probiotic supplementation has emerged as a successful and healthy alternative in mitigating GI diseases. In this review our goal is to discuss the causes of gastrointestinal diseases and the present state of various therapeutic strategies such as probiotics as live biotherapeutics and Fecal Microbial Transplants (FMT’s). Conclusion: Several reports and clinical trials point out to the beneficial effects of probiotics in modulating the gut microbiota and improving the side effects of gastrointestinal diseases. Live biotherapeutics and FMT’s could be suitable and successful alternatives to conventional therapies in mitigating the gastrointestinal pathogens.


2019 ◽  
Vol 59 (5) ◽  
pp. 1845-1858 ◽  
Author(s):  
Angela Genoni ◽  
Claus T. Christophersen ◽  
Johnny Lo ◽  
Megan Coghlan ◽  
Mary C. Boyce ◽  
...  

2020 ◽  
Vol 16 (2) ◽  
pp. 277-285 ◽  
Author(s):  
O. M. Drapkina ◽  
A. N. Kaburova

Chronic noncommunicable diseases represent one of the key medical problems of the XXI century. In this group cardiovascular diseases (CVD) are known to be the leading cause of death which pathogenesis still has the potential to be more profoundly revealed in order to discover its yet unknown but essential factors. The last decades are marked by the active investigation into the gut bacterial role in the initiation and progression of CVD. The result of this investigation has been the appreciation of microbiome as the potentially new cardiovascular risk factor. The development of sequencing techniques, together with bioinformatics analysis allowed the scientists to intensively broaden the understanding of the gut microbiota composition and functions of its metabolites in maintaining the health and the development of atherosclerosis, arterial hypertension and heart failure. The interaction between macro- and microorganisms is mediated through the variety of pathways, among which the key players are thought to be trimethylamine-N-oxide (TMAO), short chain fatty acids (SCFA) and secondary bile acids. TMAO is known due to its role in atherosclerosis development and the increase in major cardiovascular events. In the majority of research SCFA and secondary bile acids have demonstrated protective role in CVD. The great attention is being paid to the role of lipopolysaccharide of gram negative bacteria in the development of systemic low-grade inflammation due to the metabolic endotoxemia which contributes to the progression of CVD. The described interactions draw attention to the opportunity to influence on the certain mechanisms of CVD pathogenesis through the modulation of microbiota composition and function. The review is aimed at highlighting the current data about the mechanisms by which the gut microbiota and its metabolites may increase cardiovascular risk and events rate as well as discussing the existing results and future perspective of bacterial systemic effects modulation.


2017 ◽  
Vol 118 (5) ◽  
pp. 343-352 ◽  
Author(s):  
Henna Röytiö ◽  
Kati Mokkala ◽  
Tero Vahlberg ◽  
Kirsi Laitinen

AbstractThe diet–microbiota–metabolism relationships during pregnancy are mostly unknown. We explored the effect of the habitual diet and adherence to the dietary reference values on gut microbiota composition and diversity. Further, the association of gut microbiota with serum lipidomics and low-grade inflammation was evaluated. Overweight and obese women (BMI 30·7 (sd4·4) kg/m2,n100) were studied at early pregnancy (≤17 weeks). Intakes of nutrients were calculated from 3-d food diaries. Faecal microbiota composition was analysed using 16S rRNA gene sequencing. Fasting serum lipidomic profiles were determined by NMR. High-sensitivity C-reactive protein, glycoprotein acetylation (GlycA) and lipopolysaccharide activity were used as markers for low-grade inflammation. The recommended dietary intake of fibre and fat was related to higher gut microbiota richness and lower abundance of Bacteroidaceae. Correlations were observed between gut microbiota richness and GlycA and between a few microbiota genera and serum lipoprotein particles. As a conclusion, adherence to the dietary reference intake of fat and fibre was associated with beneficial gut microbiota composition, which again contributed to lipidomic profile. Higher gut microbiota richness and nutrient intakes were linked to a lower level of low-grade inflammation marker GlycA. This finding offers novel insights and opportunities for dietary modification during pregnancy with potential of improving the health of the mother and the child.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marina Sokolova ◽  
Kuan Yang ◽  
Simen H. Hansen ◽  
Mieke C. Louwe ◽  
Martin Kummen ◽  
...  

AbstractObesity-related diseases (e.g. type 2 diabetes mellitus and cardiovascular disorders) represent an increasing health problem worldwide. NLRP3 inflammasome activation may underlie obesity-induced inflammation and insulin resistance, and NLRP3 deficient mice exposed to high fat diet (HFD) appear to be protected from left ventricle (LV) concentric remodeling. Herein, we investigated if these beneficial effects were associated with alterations in plasma metabolites, using metabolomic and lipidomic analysis, and gut microbiota composition, using 16S rRNA sequencing of cecum content, comparing NLRP3 deficient and wild type (WT) mice on HFD and control diet. Obese NLRP3 deficient mice had lower systemic ceramide levels, potentially resulting attenuating inflammation, altered hepatic expression of fatty acids (FA) with lower mono-saturated FA and higher polyunsaturated FA levels, potentially counteracting development of liver steatosis, downregulated myocardial energy metabolism as assessed by proteomic analyses of LV heart tissue, and different levels of bile acids as compared with WT mice. These changes were accompanied by an altered composition of gut microbiota associated with decreased systemic levels of tri-methylamine-N-oxide and lipopolysaccharide, potentially inducing attenuating systemic inflammation and beneficial effects on lipid metabolism. Our findings support a role of NLRP3 inflammasome in the interface between metabolic and inflammatory stress, involving an altered gut microbiota composition.


PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0200305 ◽  
Author(s):  
María Florencia Zacarías ◽  
María Carmen Collado ◽  
Carlos Gómez-Gallego ◽  
Heini Flinck ◽  
Janne Aittoniemi ◽  
...  

2020 ◽  
Vol 64 (13) ◽  
pp. 2000005 ◽  
Author(s):  
Patricia Diez‐Echave ◽  
Teresa Vezza ◽  
Alba Rodríguez‐Nogales ◽  
Laura Hidalgo‐Garcia ◽  
José Garrido‐Mesa ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1792
Author(s):  
Alicia Huazano-García ◽  
María Blanca Silva-Adame ◽  
Juan Vázquez-Martínez ◽  
Argel Gastelum-Arellanez ◽  
Lino Sánchez-Segura ◽  
...  

Highly branched neo-fructans (agavins) are natural prebiotics found in Agave plants, with a large capacity to mitigate the development of obesity and metabolic syndrome. Here, we investigated the impact of agavins intake on gut microbiota modulation and their metabolites as well as their effect on metabolic endotoxemia and low-grade inflammation in mice fed high-fat diet. Mice were fed with a standard diet (ST) and high-fat diet (HF) alone or plus an agavins supplement (HF+A) for ten weeks. Gut microbiota composition, fecal metabolite profiles, lipopolysaccharides (LPS), pro-inflammatory cytokines, and systemic effects were analyzed. Agavins intake induced substantial changes in gut microbiota composition, enriching Bacteroides, Parabacteroides, Prevotella, Allobaculum, and Akkermansia genus (LDA > 3.0). l-leucine, l-valine, uracil, thymine, and some fatty acids were identified as possible biomarkers for this prebiotic supplement. As novel findings, agavins supplementation significantly decreased LPS and pro-inflammatory (IL-1α, IL-1β, and TNF-α; p < 0.05) cytokines levels in portal vein. In addition, lipid droplets content in the liver and adipocytes size also decreased with agavins consumption. In conclusion, agavins supplementation mitigate metabolic endotoxemia and low-grade inflammation in association with gut microbiota regulation and their metabolic products, thus inducing beneficial responses on metabolic disorders in high-fat diet-fed mice.


Sign in / Sign up

Export Citation Format

Share Document