Isothermal crystallization and time-temperature-transformation diagram of the organic semiconductor 5,11-bis(triethylsilylethynyl)anthradithiophene

Author(s):  
Liyang Yu ◽  
Andrew M. Zeidell ◽  
John E. Anthony ◽  
Oana D. Jurchescu ◽  
Christian Müller

Thermal annealing of organic semiconductors is critical for optimization of their electronic properties. The selection of the optimal annealing temperature –often done on a trial-and-error basis– is essential for achieving...

MRS Advances ◽  
2016 ◽  
Vol 1 (22) ◽  
pp. 1637-1643 ◽  
Author(s):  
Xinyu Wang ◽  
Boyu Peng ◽  
Paddy Chan

ABSTRACTThe thermal and electrical properties of organic semiconductor are playing critical roles in the device applications especially on the devices with large area. Although the effect may be minor in a single device like field effect transistors, the unwanted waste heat would cause much more severe problems in large-scale devices as the power density will go up significantly. The waste heat would lead to performance degradation or even failure of the devices, and thus a more detailed study on the thermal conductivity and carrier mobility of the organic thin film would be beneficial to predict the limits of the device or design a thermally stable device. Here we explore the thermal annealing effect on the thermal and electrical properties of the small molecule organic semiconductor, dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT). After the post deposition thermal annealing, the grain size of the film increases and in-plane crystallinity improves while cross-plane crystallinity keeps relatively constant. We demonstrated the cross-plane thermal conductivity is independent of the thermal annealing temperature and high annealing temperature will reduce the space-charge-limited current (SCLC) mobility. When the annealing temperature increase from 24 °C to 140 °C, the field effect mobility shows a gradual increase while the threshold voltage shifts from positive to negative. The different dependence of the SCLC mobility and field effect mobility on the annealing temperature suggest the improvement of the film crystallinity after thermal annealing is not the only dominating effect. Our investigation provides the constructive information to tune the thermal and electrical properties of organic semiconductors.


1999 ◽  
Vol 607 ◽  
Author(s):  
How-Ghee Ang ◽  
Leng-Leng Chng ◽  
Yiew-Wang Lee ◽  
Colin J. Flynn ◽  
Phil C. Smith ◽  
...  

AbstractThis paper describes the reduction of the near-band-edge absorption of zinc germanium phosphide (ZGP) through thermal annealing. The effects of the annealing time, temperature and vapour atmosphere on the reduction of the optical absorption in the near infrared (NIR) region are reported. Results have shown that the optical absorption at 2µm is reduced by at least 50% upon thermal anneal of ZGP. The optimal annealing temperature was 600'C and the optimal annealing time ranged from 200 - 400 h. Annealing in vacuum yielded a larger reduction in the 2-µm optical absorption compared to annealing in the presence of additional zinc and phosphorus vapours. Re-annealing ZGP further reduced the absorption coefficient at 2-µm. However, the percentage decrease in the 2-µm absorption coefficient was much smaller compared to the first thermal anneal.


2021 ◽  
Author(s):  
Karl J Thorley ◽  
Micai Benford ◽  
Yang Song ◽  
Sean R. Parkin ◽  
Chad Risko ◽  
...  

A carbon side-chain analogue to the high-performance organic semiconductor triethylsilylethynyl difluoroanthradithiophene has been synthesised and characterized. Atomic substitution of carbon for silicon results in subtle changes to opto-electronic properties, which...


Author(s):  
Nathan J Yutronkie ◽  
Benjamin King ◽  
Owen Alfred Melville ◽  
Benoit Hugo Lessard ◽  
Jaclyn L Brusso

The perfluorinated analogue of silicon phthalocyanine (F2-F16SiPc) has been synthesized as a novel air-stable n-type organic semiconductor. The design of F2-F16SiPc facilitates strong electron conduction through peripheral fluorination that deepens...


2013 ◽  
Vol 829 ◽  
pp. 654-658
Author(s):  
Lida Mahmoudi ◽  
Farzad Mahboubi ◽  
Moreteza Saghafi Yazdi

Nickel oxide/carbon nanotubes (NiO/CNTs) composite materials for supercapacitor are prepared by chemically depositing of nickel hydroxide onto CNTs pretreated by ultrasonication and followed by thermal annealing at 200-300°C. A series of NiO/CNTs composites with different weight ratios of CNTs and different annealing temperature are synthesized via the same route. The scanning electron microscope (SEM) images show that the nucleation of the nickel hydroxide formed on the outer walls of CNTs due to ultrasonic cavitations, and then nickel oxide coated uniformly on the outer surface of the individual CNTs after thermal annealing. The NiO/CNTs electrode presents a maximum specific capacitance of 254 F/g as well as a good cycle life in 2 M KOH electrolyte. The good electrochemical characteristics of NiO/CNTs composite can be attributed to the three-dimensionally interconnected nanotubular structure with a thin film of electroactive materials.


2013 ◽  
Vol 103 (20) ◽  
pp. 203114 ◽  
Author(s):  
Servin Rathi ◽  
Jin-Hyung Park ◽  
In-yeal Lee ◽  
Min Jin Kim ◽  
Jeong Min Baik ◽  
...  

2021 ◽  
Vol 103 (3) ◽  
pp. 17-24
Author(s):  
S. Shevelev ◽  
◽  
E. Sheveleva ◽  
O. Stary ◽  

Using methods of synchronous thermal and X-ray structural analyzes applied to zirconium dioxide powders partially stabilized with yttrium obtained by chemical coprecipitation the processes of dehydration of these powders during annealing in air have been investigated. Using the dilatometry method, the regularities of compaction of powder compacts have been investigated with thermal sintering. It was found that the resulting powders mainly consist of the tetragonal modification zirconium dioxide and are nano-sized. The average particle size was 25 nm. The resulting powders are characterized by a high degree of agglomeration. It is shown that an increase in the thermal annealing temperature from 500 to 700ºС leads to partial baking of individual particles inside the agglomerate, and causes the formation of hard agglomerates, the presence of which complicates the processes of compaction and subsequent sintering. The presence of such agglomerates prevents the production of ceramics with high mechanical characteristics: density and porosity. Thermal annealing temperature increase leads to a decrease in the density of the sintered ceramic and a decrease in its hardness.


2022 ◽  
Author(s):  
Hui Jiang ◽  
Jun Ye ◽  
Peng Hu ◽  
Shengli Zhu ◽  
Yanqin Liang ◽  
...  

Co-crystallization is an efficient way of molecular crystal engineering to tune the electronic properties of organic semiconductors. In this work, we synthesized anthracene-4,8-bis(dicyanomethylene)4,8-dihydrobenzo[1,2-b:4,5-b’]-dithiophene (DTTCNQ) single crystals as a template to...


Sign in / Sign up

Export Citation Format

Share Document