Y-box proteins combine versatile cold shock domains and arginine-rich motifs (ARMs) for pleiotropic functions in RNA biology

2018 ◽  
Vol 475 (17) ◽  
pp. 2769-2784 ◽  
Author(s):  
Kenneth C. Kleene

Y-box proteins are single-strand DNA- and RNA-binding proteins distinguished by a conserved cold shock domain (CSD) and a variable C-terminal domain organized into alternating short modules rich in basic or acidic amino acids. A huge literature depicts Y-box proteins as highly abundant, staggeringly versatile proteins that interact with all mRNAs and function in most forms of mRNA-specific regulation. The mechanisms by which Y-box proteins recognize mRNAs are unclear, because their CSDs bind a jumble of diverse elements, and the basic modules in the C-terminal domain are considered to bind nonspecifically to phosphates in the RNA backbone. A survey of vertebrate Y-box proteins clarifies the confusing names for Y-box proteins, their domains, and RNA-binding motifs, and identifies several novel conserved sequences: first, the CSD is flanked by linkers that extend its binding surface or regulate co-operative binding of the CSD and N-terminal and C-terminal domains to proteins and RNA. Second, the basic modules in the C-terminal domain are bona fide arginine-rich motifs (ARMs), because arginine is the predominant amino acid and comprises 99% of basic residues. Third, conserved differences in AA (amino acid) sequences between isoforms probably affect RNA-binding specificity. C-terminal ARMs connect with many studies, demonstrating that ARMs avidly bind sites containing specific RNA structures. ARMs crystallize insights into the under-appreciated contributions of the C-terminal domain to site-specific binding by Y-box proteins and difficulties in identifying site-specific binding by the C-terminal domain. Validated structural biology techniques are available to elucidate the mechanisms by which YBXprot (Y-box element-binding protein) CSDs and ARMs identify targets.

2007 ◽  
Vol 6 (12) ◽  
pp. 2206-2213 ◽  
Author(s):  
Kristina Hellman ◽  
Kimberly Prohaska ◽  
Noreen Williams

ABSTRACT We have previously identified and characterized two novel nuclear RNA binding proteins, p34 and p37, which have been shown to interact with a family of nucleolar phosphoproteins, NOPP44/46, in Trypanosoma brucei. These proteins are nearly identical, the major difference being an 18-amino-acid insert in the N terminus of p37. In order to characterize the interaction between p34 and p37 and NOPP44/46, we have utilized an RNA interference (RNAi) cell line that specifically targets p34 and p37. Within these RNAi cells, we detected a disruption of a higher-molecular-weight complex containing NOPP44/46, as well as a dramatic increase in nuclear NOPP44/46 protein levels. We demonstrated that no change occurred in NOPP44/46 mRNA steady-state levels or stability, nor was there a change in cellular protein levels. These results led us to investigate whether p34 and p37 regulate NOPP44/46 cellular localization. Examination of the p34 and p37 amino acid sequences revealed a leucine-rich nuclear export signal, which interacts with the nuclear export factor exportin 1. Immune capture experiments demonstrated that p34, p37, and NOPP44/46 associate with exportin 1. When these experiments were performed with p34/p37 RNAi cells, NOPP44/46 no longer associated with exportin 1. Sequential immune capture experiments demonstrated that p34, p37, NOPP44/46, and exportin 1 exist in a common complex. Inhibiting exportin 1-mediated nuclear export led to an increase in nuclear NOPP44/46 proteins, indicating that they are exported from the nucleus via this pathway. Together, our results demonstrate that p34 and p37 regulate NOPP44/46 cellular localization by facilitating their association with exportin 1.


2010 ◽  
Vol 56 (1) ◽  
pp. 138-145 ◽  
Author(s):  
O.A. Buneeva ◽  
O.V. Gnedenko ◽  
V.I. Fedchenko ◽  
A.S. Ivanov ◽  
A.E. Medvedev

Using an optical biosensor Biacore 3000 the interaction of human recombinant cytokeratins (CK) with isatin analogues (5-aminocaproyl-isatin and 5-aminoisatin) immobilized on the CM-5 chip has been investigated. CK-14 effectively interacted with 5-aminocaproyl-isatin immobilized on the carboxymethyl dextran chip surface, but not with a "shorter" analogue (5-aminoisatin). In contrast to CK14 CK8 effectively interacted only with 5-aminoisatin. In both cases cytokeratin binding with the immobilized isatin analogues was characterized by rather high affinity (Kd of 0.7 μM for the pair CK14/immobilized 5-aminocaproylisatin and 1.7 μM for the pair CK8/immobilized 5-aminoisatin). CK20 did not interact with both immobilized isatin analogues. Taking into consideration non-specific binding of mouse CK14 and rat CK8 with 5-aminocaproyl-Sepharose we have performed comparative analysis of amino acid sequences of human, mouse, and rat CK8 and CK14. The data obtained suggest that in the case of human, mouse, and rat CK14 the N-terminal domain is the most variable amoung these species, whereas the major differences between amino acid sequences of human, mouse, and rat CK8 have been found both in N-terminal and C-terminal regions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anastasiia Samsonova ◽  
Krystel El Hage ◽  
Bénédicte Desforges ◽  
Vandana Joshi ◽  
Marie-Jeanne Clément ◽  
...  

AbstractThe RNA-binding protein Lin28 (Lin28a) is an important pluripotency factor that reprograms translation and promotes cancer progression. Although Lin28 blocks let-7 microRNA maturation, Lin28 also binds to a large set of cytoplasmic mRNAs directly. However, how Lin28 regulates the processing of many mRNAs to reprogram global translation remains unknown. We show here, using a structural and cellular approach, a mixing of Lin28 with YB-1 (YBX1) in the presence of mRNA owing to their cold-shock domain, a conserved β-barrel structure that binds to ssRNA cooperatively. In contrast, the other RNA binding-proteins without cold-shock domains tested, HuR, G3BP-1, FUS and LARP-6, did not mix with YB-1. Given that YB-1 is the core component of dormant mRNPs, a model in which Lin28 gains access to mRNPs through its co-association with YB-1 to mRNA may provide a means for Lin28 to reprogram translation. We anticipate that the translational plasticity provided by mRNPs may contribute to Lin28 functions in development and adaptation of cancer cells to an adverse environment.


Author(s):  
Charannya Sozheesvari Subhramanyam ◽  
Qiong Cao ◽  
Cheng Wang ◽  
Zealyn Shi-Lin Heng ◽  
Zhihong Zhou ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jordy Homing Lam ◽  
Yu Li ◽  
Lizhe Zhu ◽  
Ramzan Umarov ◽  
Hanlun Jiang ◽  
...  

Abstract Protein-RNA interaction plays important roles in post-transcriptional regulation. However, the task of predicting these interactions given a protein structure is difficult. Here we show that, by leveraging a deep learning model NucleicNet, attributes such as binding preference of RNA backbone constituents and different bases can be predicted from local physicochemical characteristics of protein structure surface. On a diverse set of challenging RNA-binding proteins, including Fem-3-binding-factor 2, Argonaute 2 and Ribonuclease III, NucleicNet can accurately recover interaction modes discovered by structural biology experiments. Furthermore, we show that, without seeing any in vitro or in vivo assay data, NucleicNet can still achieve consistency with experiments, including RNAcompete, Immunoprecipitation Assay, and siRNA Knockdown Benchmark. NucleicNet can thus serve to provide quantitative fitness of RNA sequences for given binding pockets or to predict potential binding pockets and binding RNAs for previously unknown RNA binding proteins.


1995 ◽  
Vol 15 (1) ◽  
pp. 358-364 ◽  
Author(s):  
S R Green ◽  
L Manche ◽  
M B Mathews

The RNA-binding domain of the protein kinase DAI, the double-stranded RNA inhibitor of translation, contains two repeats of a motif that is also found in a number of other RNA-binding proteins. This motif consists of 67 amino acid residues and is predicted to contain a positively charged alpha helix at its C terminus. We have analyzed the effects of equivalent single amino acid changes in three conserved residues distributed over each copy of the motif. Mutants in the C-terminal portion of either repeat were severely defective, indicating that both copies of the motif are essential for RNA binding. Changes in the N-terminal and central parts of the motif were more debilitating if they were made in the first motif than in the second, suggesting that the first motif is the more important for RNA binding and that the second motif is structurally more flexible. When the second motif was replaced by a duplicate of the first motif, the ectopic copy retained its greater sensitivity to mutation, implying that the two motifs have distinct functions with respect to the process of RNA binding. Furthermore, the mutations have the same effect on the binding of double-stranded RNA and VA RNA, consistent with the existence of a single RNA-binding domain for both activating and inhibitory RNAs.


1987 ◽  
Vol 7 (9) ◽  
pp. 3268-3276 ◽  
Author(s):  
A B Sachs ◽  
R W Davis ◽  
R D Kornberg

The poly(A)-binding protein (PAB) gene of Saccharomyces cerevisiae is essential for cell growth. A 66-amino acid polypeptide containing half of a repeated N-terminal domain can replace the entire protein in vivo. Neither an octapeptide sequence conserved among eucaryotic RNA-binding proteins nor the C-terminal domain of PAB is required for function in vivo. A single N-terminal domain is nearly identical to the entire protein in the number of high-affinity sites for poly(A) binding in vitro (one site with an association constant of approximately 2 X 10(7) M-1) and in the size of the binding site (12 A residues). Multiple N-terminal domains afford a mechanism of PAB transfer between poly(A) strands.


2013 ◽  
Vol 449 (3) ◽  
pp. 719-728 ◽  
Author(s):  
Lydia Prongidi-Fix ◽  
Laure Schaeffer ◽  
Angelita Simonetti ◽  
Sharief Barends ◽  
Jean-François Ménétret ◽  
...  

Detailed knowledge of the structure of the ribosomal particles during their assembly on mRNA is a prerequisite for understanding the intricate translation initiation process. In vitro preparation of eukaryotic translation initiation complexes is limited by the rather tricky assembly from individually purified ribosomal subunits, initiation factors and initiator tRNA. In order to directly isolate functional complexes from living cells, methods based on affinity tags have been developed which, however, often suffer from non-specific binding of proteins and/or RNAs. In the present study we present a novel method designed for the purification of high-quality ribosome/mRNA particles assembled in RRL (rabbit reticulocyte lysate). Chimaerical mRNA–DNA molecules, consisting of the full-length mRNA ligated to a biotinylated desoxy-oligonucleotide, are immobilized on streptavidin-coated beads and incubated with RRL to form initiation complexes. After a washing step, the complexes are eluted by specific DNase I digestion of the DNA moiety of the chimaera, releasing initiation complexes in native conditions. Using this simple and robust purification setup, 80S particles properly programmed with full-length histone H4 mRNA were isolated with the expected ribosome/mRNA molar ratio of close to 1. We show that by using this novel approach purified ribosomal particles can be obtained that are suitable for biochemical and structural studies, in particular single-particle cryo-EM (cryo-electron microscopy). This purification method thus is a versatile tool for the isolation of fully functional RNA-binding proteins and macromolecular RNPs.


2000 ◽  
Vol 182 (12) ◽  
pp. 3559-3571 ◽  
Author(s):  
Jun Wang ◽  
Nadja B. Shoemaker ◽  
Gui-Rong Wang ◽  
Abigail A. Salyers

ABSTRACT The mobilizable Bacteroides element NBU2 (11 kbp) was found originally in two Bacteroides clinical isolates,Bacteroides fragilis ERL and B. thetaiotaomicron DOT. At first, NBU2 appeared to be very similar to another mobilizable Bacteroides element, NBU1, in a 2.5-kbp internal region, but further examination of the full DNA sequence of NBU2 now reveals that the region of near identity between NBU1 and NBU2 is limited to this small region and that, outside this region, there is little sequence similarity between the two elements. The integrase gene of NBU2, intN2, was located at one end of the element. This gene was necessary and sufficient for the integration of NBU2. The integrase of NBU2 has the conserved amino acids (R-H-R-Y) in the C-terminal end that are found in members of the lambda family of site-specific integrases. This was also the only region in which the NBU1 and NBU2 integrases shared any similarity (28% amino acid sequence identity and 49% sequence similarity). Integration of NBU2 was site specific in Bacteroidesspecies. Integration occurred in two primary sites in B. thetaiotaomicron. Both of these sites were located in the 3′ end of a serine-tRNA gene NBU2 also integrated in Escherichia coli, but integration was much less site specific than inB. thetaiotaomicron. Analysis of the sequence of NBU2 revealed two potential antibiotic resistance genes. The amino acid sequences of the putative proteins encoded by these genes had similarity to resistances found in gram-positive bacteria. Only one of these genes was expressed in B. thetaiotaomicron, the homolog of linA, a lincomycin resistance gene fromStaphylococcus aureus. To determine how widespread elements related to NBU1 and NBU2 are in Bacteroides species, we screened 291 Bacteroides strains. Elements with some sequence similarity to NBU2 and NBU1 were widespread inBacteroides strains, and the presence oflinAN in Bacteroides strains was highly correlated with the presence of NBU2, suggesting that NBU2 has been responsible for the spread of this gene amongBacteroides strains. Our results suggest that the NBU-related elements form a large and heterogeneous family, whose members have similar integration mechanisms but have different target sites and differ in whether they carry resistance genes.


Sign in / Sign up

Export Citation Format

Share Document