scholarly journals Structure of SPH (self-incompatibility protein homologue) proteins: a widespread family of small, highly stable, secreted proteins

2019 ◽  
Vol 476 (5) ◽  
pp. 809-826
Author(s):  
Karthik V. Rajasekar ◽  
Shuangxi Ji ◽  
Rachel J. Coulthard ◽  
Jon P. Ride ◽  
Gillian L. Reynolds ◽  
...  

Abstract SPH (self-incompatibility protein homologue) proteins are a large family of small, disulfide-bonded, secreted proteins, initially found in the self-incompatibility response in the field poppy (Papaver rhoeas), but now known to be widely distributed in plants, many containing multiple members of this protein family. Using the Origami strain of Escherichia coli, we expressed one member of this family, SPH15 from Arabidopsis thaliana, as a folded thioredoxin fusion protein and purified it from the cytosol. The fusion protein was cleaved and characterised by analytical ultracentrifugation, circular dichroism and nuclear magnetic resonance (NMR) spectroscopy. This showed that SPH15 is monomeric and temperature stable, with a β-sandwich structure. The four strands in each sheet have the same topology as the unrelated proteins: human transthyretin, bacterial TssJ and pneumolysin, with no discernible sequence similarity. The NMR-derived structure was compared with a de novo model, made using a new deep learning algorithm based on co-evolution/correlated mutations, DeepCDPred, validating the method. The DeepCDPred de novo method and homology modelling to SPH15 were then both used to derive models of the 3D structure of the three known PrsS proteins from P. rhoeas, which have only 15–18% sequence homology to SPH15. The DeepCDPred method gave models with lower discreet optimised protein energy scores than the homology models. Three loops at one end of the poppy structures are postulated to interact with their respective pollen receptors to instigate programmed cell death in pollen tubes.

2018 ◽  
Author(s):  
Elizabeth Bittermann ◽  
Ryan P. Liegel ◽  
Chelsea Menke ◽  
Andrew Timms ◽  
David R. Beier ◽  
...  

ABSTRACTTubulin genes encode a series of homologous proteins used to construct microtubules which are essential for multiple cellular processes. Neural development is particularly reliant on functional microtubule structures. Tubulin genes comprise a large family of genes with very high sequence similarity between multiple family members. Human genetics has demonstrated that a large spectrum of cortical malformations results from de novo heterozygous mutations in tubulin genes. However, the absolute requirement for most of these genes in development and disease has not been previously tested in genetic, loss of function models. Here we present two novel pathogenic tubulin alleles: a human TUBA1A missense variant with a phenotype more severe than most tubulinopathies and a mouse ENU allele of Tuba1a. Furthermore, we directly test the requirement for Tuba1a, Tuba8, Tubb2a and Tubb2b in the mouse by deleting each gene individually using CRISPR-Cas9 genome editing. We show that loss of Tuba8, Tubb2a or Tubb2b does not lead to cortical malformation phenotypes or impair survival. In contrast, loss of Tuba1a is perinatal lethal and leads to significant forebrain dysmorphology. Thus, despite their functional similarity, the requirements for each of the tubulin genes and levels of functional redundancy are quite different throughout the gene family. The ability of the mouse to survive in the absence of some tubulin genes known to cause disease in humans suggests future intervention strategies for these devastating tubulinopathy diseases.


Toxins ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 359 ◽  
Author(s):  
Maria Romero-Gutiérrez ◽  
Carlos Santibáñez-López ◽  
Juana Jiménez-Vargas ◽  
Cesar Batista ◽  
Ernesto Ortiz ◽  
...  

To understand the diversity of scorpion venom, RNA from venomous glands from a sawfinger scorpion, Serradigitus gertschi, of the family Vaejovidae, was extracted and used for transcriptomic analysis. A total of 84,835 transcripts were assembled after Illumina sequencing. From those, 119 transcripts were annotated and found to putatively code for peptides or proteins that share sequence similarities with the previously reported venom components of other species. In accordance with sequence similarity, the transcripts were classified as potentially coding for 37 ion channel toxins; 17 host defense peptides; 28 enzymes, including phospholipases, hyaluronidases, metalloproteases, and serine proteases; nine protease inhibitor-like peptides; 10 peptides of the cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 protein superfamily; seven La1-like peptides; and 11 sequences classified as “other venom components”. A mass fingerprint performed by mass spectrometry identified 204 components with molecular masses varying from 444.26 Da to 12,432.80 Da, plus several higher molecular weight proteins whose precise masses were not determined. The LC-MS/MS analysis of a tryptic digestion of the soluble venom resulted in the de novo determination of 16,840 peptide sequences, 24 of which matched sequences predicted from the translated transcriptome. The database presented here increases our general knowledge of the biodiversity of venom components from neglected non-buthid scorpions.


2020 ◽  
Vol 21 (12) ◽  
pp. 4447
Author(s):  
Pedro A. Lazo ◽  
Juan L. García ◽  
Paulino Gómez-Puertas ◽  
Íñigo Marcos-Alcalde ◽  
Cesar Arjona ◽  
...  

Complex neurodevelopmental syndromes frequently have an unknown etiology, in which genetic factors play a pathogenic role. This study utilizes whole-exome sequencing (WES) to examine four members of a family with a son presenting, since birth, with epileptic-like crises, combined with cerebral palsy, severe neuromotor and developmental delay, dystonic tetraparexia, axonal motor affectation, and hyper-excitability of unknown origin. The WES study detected within the patient a de novo heterozygous in-frame duplication of thirty-six nucleotides within exon 7 of the human KCNQ2 gene. This insertion duplicates the first twelve amino acids of the calmodulin binding site I. Molecular dynamics simulations of this KCNQ2 peptide duplication, modelled on the 3D structure of the KCNQ2 protein, suggest that the duplication may lead to the dysregulation of calcium inhibition of this protein function.


2013 ◽  
Vol 450 (1) ◽  
pp. 159-167 ◽  
Author(s):  
Sweta Maheshwari ◽  
Marina Lavigne ◽  
Alicia Contet ◽  
Blandine Alberge ◽  
Emilie Pihan ◽  
...  

The intra-erythrocytic proliferation of the human malaria parasite Plasmodium falciparum requires massive synthesis of PE (phosphatidylethanolamine) that together with phosphatidylcholine constitute the bulk of the malaria membrane lipids. PE is mainly synthesized de novo by the CDP:ethanolamine-dependent Kennedy pathway. We previously showed that inhibition of PE biosynthesis led to parasite death. In the present study we characterized PfECT [P. falciparum CTP:phosphoethanolamine CT (cytidylyltransferase)], which we identified as the rate-limiting step of the PE metabolic pathway in the parasite. The cellular localization and expression of PfECT along the parasite life cycle were studied using polyclonal antibodies. Biochemical analyses showed that the enzyme activity follows Michaelis–Menten kinetics. PfECT is composed of two CT domains separated by a linker region. Activity assays on recombinant enzymes upon site-directed mutagenesis revealed that the N-terminal CT domain was the only catalytically active domain of PfECT. Concordantly, three-dimensional homology modelling of PfECT showed critical amino acid differences between the substrate-binding sites of the two CT domains. PfECT was predicted to fold as an intramolecular dimer suggesting that the inactive C-terminal domain is important for dimer stabilization. Given the absence of PE synthesis in red blood cells, PfECT represents a potential antimalarial target opening the way for a rational conception of bioactive compounds.


mSystems ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Sean Ting-Shyang Wei ◽  
Yu-Wei Wu ◽  
Tzong-Huei Lee ◽  
Yi-Shiang Huang ◽  
Cheng-Yu Yang ◽  
...  

ABSTRACTThe 2,3-secopathway, the pathway for anaerobic cholesterol degradation, has been established in the denitrifying betaproteobacteriumSterolibacterium denitrificans. However, knowledge of how microorganisms respond to cholesterol at the community level is elusive. Here, we applied mesocosm incubation and 16S rRNA sequencing to reveal that, in denitrifying sludge communities, three betaproteobacterial operational taxonomic units (OTUs) with low (94% to 95%) 16S rRNA sequence similarity toStl. denitrificansare cholesterol degraders and members of the rare biosphere. Metatranscriptomic and metabolite analyses show that these degraders adopt the 2,3-secopathway to sequentially catalyze the side chain and sterane of cholesterol and that two molybdoenzymes—steroid C25 dehydrogenase and 1-testosterone dehydrogenase/hydratase—are crucial for these bioprocesses, respectively. The metatranscriptome further suggests that these betaproteobacterial degraders display chemotaxis and motility toward cholesterol and that FadL-like transporters may be the key components for substrate uptake. Also, these betaproteobacteria are capable of transporting micronutrients and synthesizing cofactors essential for cellular metabolism and cholesterol degradation; however, the required cobalamin is possibly provided by cobalamin-de novo-synthesizing gamma-, delta-, and betaproteobacteria via the salvage pathway. Overall, our results indicate that the ability to degrade cholesterol in sludge communities is reserved for certain rare biosphere members and that C25 dehydrogenase can serve as a biomarker for sterol degradation in anoxic environments.IMPORTANCESteroids are ubiquitous and abundant natural compounds that display recalcitrance. Biodegradation via sludge communities in wastewater treatment plants is the primary removal process for steroids. To date, compared to studies for aerobic steroid degradation, the knowledge of anaerobic degradation of steroids has been based on only a few model organisms. Due to the increase of anthropogenic impacts, steroid inputs may affect microbial diversity and functioning in ecosystems. Here, we first investigated microbial functional responses to cholesterol, the most abundant steroid in sludge, at the community level. Our metagenomic and metatranscriptomic analyses revealed that the capacities for cholesterol approach, uptake, and degradation are unique traits of certain low-abundance betaproteobacteria, indicating the importance of the rare biosphere in bioremediation. Apparent expression of genes involved in cofactorde novosynthesis and salvage pathways suggests that these micronutrients play important roles for cholesterol degradation in sludge communities.


2021 ◽  
Vol 22 (16) ◽  
pp. 8677
Author(s):  
Nunzianna Doti ◽  
Mario Mardirossian ◽  
Annamaria Sandomenico ◽  
Menotti Ruvo ◽  
Andrea Caporale

Natural and de novo designed peptides are gaining an ever-growing interest as drugs against several diseases. Their use is however limited by the intrinsic low bioavailability and poor stability. To overcome these issues retro-inverso analogues have been investigated for decades as more stable surrogates of peptides composed of natural amino acids. Retro-inverso peptides possess reversed sequences and chirality compared to the parent molecules maintaining at the same time an identical array of side chains and in some cases similar structure. The inverted chirality renders them less prone to degradation by endogenous proteases conferring enhanced half-lives and an increased potential as new drugs. However, given their general incapability to adopt the 3D structure of the parent peptides their application should be careful evaluated and investigated case by case. Here, we review the application of retro-inverso peptides in anticancer therapies, in immunology, in neurodegenerative diseases, and as antimicrobials, analyzing pros and cons of this interesting subclass of molecules.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253918
Author(s):  
Jelena Repac ◽  
Marija Mandić ◽  
Tanja Lunić ◽  
Bojan Božić ◽  
Biljana Božić Nedeljković

Autoimmune diseases, often triggered by infection, affect ~5% of the worldwide population. Rheumatoid Arthritis (RA)–a painful condition characterized by the chronic inflammation of joints—comprises up to 20% of known autoimmune pathologies, with the tendency of increasing prevalence. Molecular mimicry is recognized as the leading mechanism underlying infection-mediated autoimmunity, which assumes sequence similarity between microbial and self-peptides driving the activation of autoreactive lymphocytes. T lymphocytes are leading immune cells in the RA-development. Therefore, deeper understanding of the capacity of microorganisms (both pathogens and commensals) to trigger autoreactive T cells is needed, calling for more systematic approaches. In the present study, we address this problem through a comprehensive immunoinformatics analysis of experimentally determined RA-related T cell epitopes against the proteomes of Bacteria, Fungi, and Viruses, to identify the scope of organisms providing homologous antigenic peptide determinants. By this, initial homology screening was complemented with de novo T cell epitope prediction and another round of homology search, to enable: i) the confirmation of homologous microbial peptides as T cell epitopes based on the predicted binding affinity to RA-related HLA polymorphisms; ii) sequence similarity inference for top de novo T cell epitope predictions to the RA-related autoantigens to reveal the robustness of RA-triggering capacity for identified (micro/myco)organisms. Our study reveals a much larger repertoire of candidate RA-triggering organisms, than previously recognized, providing insights into the underestimated role of Fungi in autoimmunity and the possibility of a more direct involvement of bacterial commensals in RA-pathology. Finally, our study pinpoints Endoplasmic reticulum chaperone BiP as the most potent (most likely mimicked) RA-related autoantigen, opening an avenue for identifying the most potent autoantigens in a variety of different autoimmune pathologies, with possible implications in the design of next-generation therapeutics aiming to induce self-tolerance by affecting highly reactive autoantigens.


2020 ◽  
Author(s):  
Jonathan R. Belyeu ◽  
Harrison Brand ◽  
Harold Wang ◽  
Xuefang Zhao ◽  
Brent S. Pedersen ◽  
...  

AbstractEach human genome includes de novo mutations that arose during gametogenesis. While these germline mutations represent a fundamental source of new genetic diversity, they can also create deleterious alleles that impact fitness. The germline mutation rate for single nucleotide variants and factors that significantly influence this rate, such as parental age, are now well established. However, far less is known about the frequency, distribution, and features that impact de novo structural mutations. We report a large, family-based study of germline mutations, excluding aneuploidy, that affect genome structure among 572 genomes from 33 families in a multigenerational CEPH-Utah cohort and 2,363 cases of non-familial autism spectrum disorder (ASD), 1,938 unaffected siblings, and both parents (9,599 genomes in total). We find that de novo structural mutations detected by alignment-based, short-read WGS occurred at an overall rate of at least 0.160 events per genome in unaffected individuals and was significantly higher (0.206 per genome) in ASD cases. In both probands and unaffected samples, nearly 73% of de novo structural mutations arose in paternal gametes, and predict most de novo structural mutations to be caused by mutational mechanisms that do not require sequence homology. After multiple testing correction we did not observe a statistically significant correlation between parental age and the rate of de novo structural variation in offspring. These results highlight that a spectrum of mutational mechanisms contribute to germline structural mutations, and that these mechanisms likely have markedly different rates and selective pressures than those leading to point mutations.


1994 ◽  
Vol 6 (6) ◽  
pp. 1174-1184 ◽  
Author(s):  
Lawrence Saul ◽  
Michael I. Jordan

We introduce a large family of Boltzmann machines that can be trained by standard gradient descent. The networks can have one or more layers of hidden units, with tree-like connectivity. We show how to implement the supervised learning algorithm for these Boltzmann machines exactly, without resort to simulated or mean-field annealing. The stochastic averages that yield the gradients in weight space are computed by the technique of decimation. We present results on the problems of N-bit parity and the detection of hidden symmetries.


Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 979 ◽  
Author(s):  
Ping Liu ◽  
Wu Chen ◽  
Jin-Ping Chen

Pangolins are endangered animals in urgent need of protection. Identifying and cataloguing the viruses carried by pangolins is a logical approach to evaluate the range of potential pathogens and help with conservation. This study provides insight into viral communities of Malayan Pangolins (Manis javanica) as well as the molecular epidemiology of dominant pathogenic viruses between Malayan Pangolin and other hosts. A total of 62,508 de novo assembled contigs were constructed, and a BLAST search revealed 3600 ones (≥300 nt) were related to viral sequences, of which 68 contigs had a high level of sequence similarity to known viruses, while dominant viruses were the Sendai virus and Coronavirus. This is the first report on the viral diversity of pangolins, expanding our understanding of the virome in endangered species, and providing insight into the overall diversity of viruses that may be capable of directly or indirectly crossing over into other mammals.


Sign in / Sign up

Export Citation Format

Share Document