scholarly journals Waste not, want not: Nitrogen recycling by metabolic pathways shared between an animal and its symbiotic bacteria

2013 ◽  
Vol 35 (4) ◽  
pp. 20-24
Author(s):  
Sandy J. Macdonald ◽  
Gavin H. Thomas ◽  
Angela E. Douglas

A combined computational and experimental analysis of metabolism in the symbiosis between the pea aphid and its obligate endosymbiont Buchnera aphidicola redefines existing notions of symbiotic nitrogen recycling. As a consequence of metabolic pathways shared between the partners, the insect recycles waste ammonia into essential amino acids (EAAs) that are lacking in its diet of sugar-rich but nitrogen-poor plant phloem sap.

2008 ◽  
Vol 276 (1658) ◽  
pp. 987-991 ◽  
Author(s):  
E Akman Gündüz ◽  
A.E Douglas

Animals generally require a dietary supply of various nutrients (vitamins, essential amino acids, etc.) because their biosynthetic capabilities are limited. The capacity of aphids to use plant phloem sap, with low essential amino acid content, has been attributed to their symbiotic bacteria, Buchnera aphidicola , which can synthesize these nutrients; but this has not been demonstrated empirically. We demonstrate here that phloem sap obtained from the severed stylets of pea aphids Acyrthosiphon pisum feeding on Vicia faba plants generally provided inadequate amounts of at least one essential amino acid to support aphid growth. Complementary analyses using aphids reared on chemically defined diets with each amino acid individually omitted revealed that the capacity of the symbiotic bacterium B. aphidicola to synthesize essential amino acids exceeded the dietary deficit of all phloem amino acids except methionine. It is proposed that this shortfall of methionine was met by aphid usage of the non-protein amino acid 5-methylmethionine in the phloem sap. This study provides the first quantitative demonstration that bacterial symbiosis can meet the nutritional demand of plant-reared aphids. It shows how symbiosis with micro-organisms has enabled this group of animals to escape from the constraint of requiring a balanced dietary supply of amino acids.


2019 ◽  
Author(s):  
Alejandro Manzano-Marín

ABSTRACTObligate symbiotic associations are present in a wide variety of animals with a nutrient-restricted diet. Aphids (hemiptera: Aphididae) almost-universally hostBuchnera aphidicolabacteria in a specialised organs (called bacteriomes). These bacteria supply the aphid with essential nutrients lacking from their diet (i.e. essential amino acids and some B vitamins). Some aphid lineages, such as species from the Lacninae subfamily, have evolved co-obligate associations with secondary endosymbionts, deriving from a loss of biotin-and riboflavin-biosynthetic genes. In this study I re-analyse previously published sequencing data from the banana aphidPentalonia nigronervosa. I show that the metabolic inference results from De Clercket al.(2015) are incorrect and possibly arise from the use of inadequate methods. Additionally, I discuss how the biased interpretation of their antibiotic treatment analyses together with the incorrect metabolic inference resulted in the erroneous suggestion “that a co-obligatory symbiosis betweenB. aphidicolaandWolbachiaoccurs in the banana aphid”.


EvoDevo ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Celeste R. Banfill ◽  
Alex C. C. Wilson ◽  
Hsiao-ling Lu

Abstract Background Host/symbiont integration is a signature of evolutionarily ancient, obligate endosymbioses. However, little is known about the cellular and developmental mechanisms of host/symbiont integration at the molecular level. Many insects possess obligate bacterial endosymbionts that provide essential nutrients. To advance understanding of the developmental and metabolic integration of hosts and endosymbionts, we track the localization of a non-essential amino acid transporter, ApNEAAT1, across asexual embryogenesis in the aphid, Acyrthosiphon pisum. Previous work in adult bacteriomes revealed that ApNEAAT1 functions to exchange non-essential amino acids at the A. pisum/Buchnera aphidicola symbiotic interface. Driven by amino acid concentration gradients, ApNEAAT1 moves proline, serine, and alanine from A. pisum to Buchnera and cysteine from Buchnera to A. pisum. Here, we test the hypothesis that ApNEAAT1 is localized to the symbiotic interface during asexual embryogenesis. Results During A. pisum asexual embryogenesis, ApNEAAT1 does not localize to the symbiotic interface. We observed ApNEAAT1 localization to the maternal follicular epithelium, the germline, and, in late-stage embryos, to anterior neural structures and insect immune cells (hemocytes). We predict that ApNEAAT1 provisions non-essential amino acids to developing oocytes and embryos, as well as to the brain and related neural structures. Additionally, ApNEAAT1 may perform roles related to host immunity. Conclusions Our work provides further evidence that the embryonic and adult bacteriomes of asexual A. pisum are not equivalent. Future research is needed to elucidate the developmental time point at which the bacteriome reaches maturity.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 675 ◽  
Author(s):  
Bo-Hyun Choi ◽  
Jonathan L. Coloff

Far beyond simply being 11 of the 20 amino acids needed for protein synthesis, non-essential amino acids play numerous important roles in tumor metabolism. These diverse functions include providing precursors for the biosynthesis of macromolecules, controlling redox status and antioxidant systems, and serving as substrates for post-translational and epigenetic modifications. This functional diversity has sparked great interest in targeting non-essential amino acid metabolism for cancer therapy and has motivated the development of several therapies that are either already used in the clinic or are currently in clinical trials. In this review, we will discuss the important roles that each of the 11 non-essential amino acids play in cancer, how their metabolic pathways are linked, and how researchers are working to overcome the unique challenges of targeting non-essential amino acid metabolism for cancer therapy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai Kamm ◽  
Hans-Jürgen Osigus ◽  
Peter F. Stadler ◽  
Rob DeSalle ◽  
Bernd Schierwater

AbstractSymbiotic relationships between eukaryotic hosts and bacteria range from parasitism to mutualism and may deeply influence both partners’ fitness. The presence of intracellular bacteria in the metazoan phylum Placozoa has been reported several times, but without any knowledge about the nature of this relationship and possible implications for the placozoan holobiont. This information may be of crucial significance since little is known about placozoan ecology and how different species adapt to different environmental conditions, despite being almost invariable at the morphological level. We here report on the novel genome of the rickettsial endosymbiont of Trichoplax sp. H2 (strain “Panama”). The combination of eliminated and retained metabolic pathways of the bacterium indicates a potential for a mutualistic as well as for a parasitic relationship, whose outcome could depend on the environmental context. In particular we show that the endosymbiont is dependent on the host for growth and reproduction and that the latter could benefit from a supply with essential amino acids and important cofactors. These findings call for further studies to clarify the actual benefit for the placozoan host and to investigate a possible role of the endosymbiont for ecological separation between placozoan species.


1999 ◽  
Vol 202 (19) ◽  
pp. 2639-2652 ◽  
Author(s):  
G. Febvay ◽  
Y. Rahbe ◽  
M. Rynkiewicz ◽  
J. Guillaud ◽  
G. Bonnot

The fate of sucrose, the major nutrient of an aphid's natural food, was explored by radiolabeling in the pea aphid Acyrthosiphon pisum. To investigate the influence of nitrogen quality of food on amino acid neosynthesis, pea aphids were reared on two artificial diets differing in their amino acid composition. The first (diet A) had an equilibrated amino acid balance, similar to that derived from analysis of aphid carcass, and the other (diet B) had an unbalanced amino acid composition similar to that of legume phloem sap. Aphids grown on either diet expired the same quantity of sucrose carbon as CO(2), amounting to 25–30 % of the ingested sucrose catabolized in oxidation pathways. On diet A, the aphids excreted through honeydew about twice as much sucrose carbon as on diet B (amounting to 12.6 % of the ingested sucrose for diet A and 8.4 % for diet B), while amounts of sucrose carbons incorporated into exuviae were almost identical (1.9 % of the ingested sucrose on diet A and 2.7 % on diet B). There was also no difference in the amounts of sucrose carbon incorporated into the aphid tissues, which represented close to 50 % of the ingested sucrose. Sucrose carbons in the aphid tissues were mainly incorporated into lipids and the quantities involved were the same in aphids reared on either diet. On diet B, we observed neosynthesis of all protein amino acids from sucrose carbons and, for the first time in an aphid, we directly demonstrated the synthesis of the essential amino acids leucine, valine and phenylalanine. Amino acid neosynthesis from sucrose was significantly higher on diet B (11.5 % of ingested sucrose carbons) than on diet A (5.4 %). On diet A, neosynthesis of most of the amino acids was significantly diminished, and synthesis of two of them (histidine and arginine) was completely suppressed. The origin of amino acids egested through honeydew was determined from the specific activity of the free amino acid pool in the aphid. Aphids are able to adjust to variation in dietary amino acids by independent egestion of each amino acid. While more than 80 % of excreted nitrogen was from food amino acids, different amino acids were excreted in honeydew of aphids reared on the two diets. The conversion yields of dietary sucrose into aphid amino acids determined in this study were combined with those obtained previously by studying the fate of amino acids in pea aphids reared on diet A. The origin of all the amino acid carbons in aphid tissues was thus computed, and the metabolic abilities of aphid are discussed from an adaptive point of view, with respect to their symbiotic status.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 161 ◽  
Author(s):  
Ning Lv ◽  
Lei Wang ◽  
Wen Sang ◽  
Chang-Zhong Liu ◽  
Bao-Li Qiu

Pea aphid (Acyrthosiphon pisum) is a worldwide pest that feeds exclusively on the phloem sap of numerous host plants. It harbours a well-known primary endosymbiont Buchnera aphidicola that helps to overcome the nutritional deficiency of a plant-based diet. However, how the Buchnera contributes to the nutritional and energy metabolism of its aphid host is unclear to date. In the current study, the function of Buchnera in relation to nutritional synthesis of pea aphid was investigated by disrupting the primary endosymbiont with an antibiotic rifampicin. Our findings revealed that the disruption of Buchnera led to infertility and higher loss in body mass of aphid hosts. Body length and width were also decreased significantly compared to healthy aphids. The detection of nutrition indicated that the quantity of proteins, soluble sugars, and glycogen in aposymbiotic pea aphids increased slowly with the growth of the aphid host. In comparison, the quantities of all the nutritional factors were significantly lower than those of symbiotic pea aphids, while the quantity of total lipid and neutral fat in aposymbiotic pea aphids were distinctly higher than those of symbiotic ones. Thus, we concluded that the significant reduction of the total amount of proteins, soluble sugars, and glycogen and the significant increase of neutral fats in aposymbiotic pea aphids were due to the disruption of Buchnera, which confirmed that the function of Buchnera is irreplaceable in the pea aphid.


2001 ◽  
Vol 183 (6) ◽  
pp. 1853-1861 ◽  
Author(s):  
Marta A. Clark ◽  
Linda Baumann ◽  
MyLo Ly Thao ◽  
Nancy A. Moran ◽  
Paul Baumann

ABSTRACT Psyllids, like aphids, feed on plant phloem sap and are obligately associated with prokaryotic endosymbionts acquired through vertical transmission from an ancestral infection. We have sequenced 37 kb of DNA of the genome of Carsonella ruddii, the endosymbiont of psyllids, and found that it has a number of unusual properties revealing a more extreme case of degeneration than was previously reported from studies of eubacterial genomes, including that of the aphid endosymbiont Buchnera aphidicola. Among the unusual properties are an exceptionally low guanine-plus-cytosine content (19.9%), almost complete absence of intergenic spaces, operon fusion, and lack of the usual promoter sequences upstream of 16S rDNA. These features suggest the synthesis of long mRNAs and translational coupling. The most extreme instances of base compositional bias occur in the genes encoding proteins that have less highly conserved amino acid sequences; the guanine-plus-cytosine content of some protein-coding sequences is as low as 10%. The shift in base composition has a large effect on proteins: in polypeptides of C. ruddii, half of the residues consist of five amino acids with codons low in guanine plus cytosine. Furthermore, the proteins ofC. ruddii are reduced in size, with an average of about 9% fewer amino acids than in homologous proteins of related bacteria. These observations suggest that the C. ruddii genome is not subject to constraints that limit the evolution of other known eubacteria.


Author(s):  
Helen Carrasco Hope ◽  
Robert J. Salmond

AbstractT cell activation, differentiation and proliferation is dependent upon and intrinsically linked to a capacity to modulate and adapt cellular metabolism. Antigen-induced activation stimulates a transcriptional programme that results in metabolic reprogramming, enabling T cells to fuel anabolic metabolic pathways and provide the nutrients to sustain proliferation and effector responses. Amino acids are key nutrients for T cells and have essential roles as building blocks for protein synthesis as well as in numerous metabolic pathways. In this review, we discuss the roles for uptake and biosynthesis of non-essential amino acids in T cell metabolism, activation and effector function. Furthermore, we highlight the effects of amino acid metabolism and depletion by cancer cells on T cell anti-tumour function and discuss approaches to modulate and improve T cell metabolism for improved anti-tumour function in these nutrient-depleted microenvironments.


Sign in / Sign up

Export Citation Format

Share Document