scholarly journals Use of octadecasilyl-silica for the extraction and purification of peptides in biological samples. Application to the identification of circulating metabolites of corticotropin-(1-24)-tetracosapeptide and somatostatin in vivo

1977 ◽  
Vol 168 (1) ◽  
pp. 9-13 ◽  
Author(s):  
H P J Bennett ◽  
A M Hudson ◽  
C McMartin ◽  
G E Purdon

Peptides can be adsorbed on octadecasilyl-silica from large volumes of aqueous solution and eluted with aqueous solvent mixtures containing methanol or acetonitrile. These properties may be used for the extraction and purification of peptide fragments in plasma samples collected from rats. After intravenous injection of Synacthen [corticotropin-(1-24)-tetracosapeptide], it was shown that within 2 min the main circulating products were intact peptide and its sulphoxide. In addition, a number of fragments indicative of cleavage at the N- and C-termini were present. Most of the products formed from Synacthen have low biological activity. Somatostatin was rapidly cleaved in vivo and in vitro to a single product, which probably retains biological activity. The absence of other circulating products suggests that somatostatin is only inactivated once it leaves the circulation.

Author(s):  
Alix Garcia ◽  
Sylvie Dunoyer-Geindre ◽  
Richard J. Fish ◽  
Marguerite Neerman-Arbez ◽  
Jean-Luc Reny ◽  
...  

AbstractMicroRNAs (miRNAs) are small noncoding RNAs modulating protein production. They are key players in regulation of cell function and are considered as biomarkers in several diseases. The identification of the proteins they regulate, and their impact on cell physiology, may delineate their role as diagnostic or prognostic markers and identify new therapeutic strategies. During the last 3 decades, development of a large panel of techniques has given rise to multiple models dedicated to the study of miRNAs. Since plasma samples are easily accessible, circulating miRNAs can be studied in clinical trials. To quantify miRNAs in numerous plasma samples, the choice of extraction and purification techniques, as well as normalization procedures, are important for comparisons of miRNA levels in populations and over time. Recent advances in bioinformatics provide tools to identify putative miRNAs targets that can then be validated with dedicated assays. In vitro and in vivo approaches aim to functionally validate candidate miRNAs from correlations and to understand their impact on cellular processes. This review describes the advantages and pitfalls of the available techniques for translational research to study miRNAs with a focus on their role in regulating platelet reactivity.


2020 ◽  
Vol 27 (1) ◽  
pp. 54-77 ◽  
Author(s):  
Bogdan Bumbăcilă ◽  
Mihai V. Putz

Pesticides are used today on a planetary-wide scale. The rising need for substances with this biological activity due to an increasing consumption of agricultural and animal products and to the development of urban areas makes the chemical industry to constantly investigate new molecules or to improve the physicochemical characteristics, increase the biological activities and improve the toxicity profiles of the already known ones. Molecular databases are increasingly accessible for in vitro and in vivo bioavailability studies. In this context, structure-activity studies, by their in silico - in cerebro methods, are used to precede in vitro and in vivo studies in plants and experimental animals because they can indicate trends by statistical methods or biological activity models expressed as mathematical equations or graphical correlations, so a direction of study can be developed or another can be abandoned, saving financial resources, time and laboratory animals. Following this line of research the present paper reviews the Structure-Activity Relationship (SAR) studies and proposes a correlation between a topological connectivity index and the biological activity or toxicity made as a result of a study performed on 11 molecules of organophosphate compounds, randomly chosen, with a basic structure including a Phosphorus atom double bounded to an Oxygen atom or to a Sulfur one and having three other simple covalent bonds with two alkoxy (-methoxy or -ethoxy) groups and to another functional group different from the alkoxy groups. The molecules were packed on a cubic structure consisting of three adjacent cubes, respecting a principle of topological efficiency, that of occupying a minimal space in that cubic structure, a method that was called the Clef Method. The central topological index selected for correlation was the Wiener index, since it was possible this way to discuss different adjacencies between the nodes in the graphs corresponding to the organophosphate compounds molecules packed on the cubic structure; accordingly, "three dimensional" variants of these connectivity indices could be considered and further used for studying the qualitative-quantitative relationships for the specific molecule-enzyme interaction complexes, including correlation between the Wiener weights (nodal specific contributions to the total Wiener index of the molecular graph) and the biochemical reactivity of some of the atoms. Finally, when passing from SAR to Q(uantitative)-SAR studies, especially by the present advanced method of the cubic molecule (Clef Method) and its good assessment of the (neuro)toxicity of the studied molecules and of their inhibitory effect on the target enzyme - acetylcholinesterase, it can be seen that a predictability of the toxicity and activity of different analogue compounds can be ensured, facilitating the in vivo experiments or improving the usage of pesticides.


2019 ◽  
Vol 16 (3) ◽  
pp. 175-180
Author(s):  
Fengjin Hao ◽  
Yueqin Feng ◽  
Yifu Guan

Objective: To verify whether the botulinum toxin heavy chain HCS has specific neuronal targeting function and to confirm whether TAT-EGFP-LC has hydrolyzable SNAP-25 and has transmembrane biological activity. Methods: We constructed the pET-28a-TAT-EGFP-HCS/LC plasmid. After the plasmid is expressed and purified, we co-cultured it with nerve cells or tumors. In addition, we used Western-Blot to identify whether protein LC and TAT-EGFP-LC can digest the protein SNAP-25. Results: Fluorescence imaging showed that PC12, BV2, C6 and HeLa cells all showed green fluorescence, and TAT-EGFP-HCS had the strongest fluorescence. Moreover, TAT-EGFP-LC can hydrolyze intracellular SNAP-25 in PC12 cells, C6 cells, BV2 cells and HeLa, whereas LC alone cannot. In addition, the in vivo protein TAT-EGFP-HCS can penetrate the blood-brain barrier and enter mouse brain tissue. Conclusion: TAT-EGFP-HSC expressed in vitro has neural guidance function and can carry large proteins across the cell membrane without influencing the biological activity.


Author(s):  
B Lefrère ◽  
D Wohrer ◽  
C Godefroy ◽  
M Soichot ◽  
A Mihoubi ◽  
...  

Abstract We report the case of an 11-month-old male infant with a complex congenital heart disease who was admitted in the intensive care unit following cardiorespiratory arrest at home. Toxicological urine screening reported an ethanol concentration of 0.65 g/L using an enzymatic assay, without suspicion of alcohol intake; a significant amount of ethanol concentration was found in two plasma samples using the same enzymatic assay. Plasma and urine ethanol concentrations were below the limit of quantification (LOQ) when tested using a gas chromatography method. Urine ethanol level was also below the LOQ when tested by enzymatic assay after an initial urine ultrafiltration. These results confirmed our suspicion of matrix interference due to elevated lactate and lactate dehydrogenase levels interfering in the enzymatic assay. This analytical interference, well-known in postmortem samples, extensively studied in vitro, has been rarely reported in vivo, especially in children. To the best of our knowledge, this case is only the sixth one reported in an infant’s plasma and the first initially discovered from urine. Indeed, as for ethanol, this last matrix has not been studied in the context of this artifact that may induce false-positive ethanol results while seeking a diagnosis in life-threatening or fatal situations that are potentially subject to forensic scrutiny. In parallel to a synthetic literature review, we propose a simple, informative decision tree, in order to help health professionals suspecting a false-positive result when performing an ethanol assay.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2198
Author(s):  
Marcos Mateo-Fernández ◽  
Fernando Valenzuela-Gómez ◽  
Rafael Font ◽  
Mercedes Del Río-Celestino ◽  
Tania Merinas-Amo ◽  
...  

Taurine is one of the main ingredients used in energy drinks which are highly consumed in adolescents for their sugary taste and stimulating effect. With energy drinks becoming a worldwide phenomenon, the biological effects of these beverages must be evaluated in order to fully comprehend the potential impact of these products on the health due to the fact nutrition is closely related to science since the population consumes food to prevent certain diseases. Therefore, the aim of this study was to evaluate the biological effects of taurine, glucose, classic Red Bull® and sugar-free Red Bull® in order to check the food safety and the nutraceutical potential of these compounds, characterising different endpoints: (i) Toxicology, antitoxicology, genotoxicology and life expectancy assays were performed in the Drosophila melanogaster model organism; (ii) The in vitro chemopreventive activity of testing compounds was determined by assessing their cytotoxicity, the proapoptotic DNA-damage capability to induce internucleosomal fragmentation, the strand breaks activity and the modulator role on the methylation status of genomic repetitive sequences of HL-60 promyelocytic cells. Whereas none tested compounds showed toxic or genotoxic effect, all tested compounds exerted antitoxic and antigenotoxic activity in Drosophila. Glucose, classic Red Bull® and sugar-free Red Bull® were cytotoxic in HL-60 cell line. Classic Red Bull® induced DNA internucleosomal fragmentation although none of them exhibited DNA damage on human leukaemia cells. In conclusion, the tested compounds are safe on Drosophila melanogaster and classic Red Bull® could overall possess nutraceutical potential in the in vivo and in vitro model used in this study. Besides, taurine could holistically be one of the bioactive compounds responsible for the biological activity of classic Red Bull®.


2005 ◽  
Vol 91 (3) ◽  
pp. 492-498 ◽  
Author(s):  
Xiang Xiao ◽  
Tianping Wang ◽  
Xiaodong Zheng ◽  
Guangjing Shen ◽  
Zhigang Tian
Keyword(s):  

1984 ◽  
Vol 4 (12) ◽  
pp. 1009-1015 ◽  
Author(s):  
J. P. Bali ◽  
H. Mattras ◽  
A. Previero ◽  
M. A. Coletti-Previero

Rat blood was shown to contain an aminopeptidase which rapidly hydrolyses short peptides containing an aromatic amino acid as N-terminal residue. Using tetragastrin (Trp-Met-Asp-PheNH 2) as substrate, we showed that some amino acid hydroxamates inhibit rat aminopeptidase activity ‘in vitro’ in the following order: HTrpNHOH > HPheNHOH ≫ HAIaNHOH. The same hydroxamates markedly enhanced the biological activity of tetragastrin ‘in vivo’. The amplification of the secretory effect, correlated with the amount of the hydroxamate used, strongly suggests that these compounds can stabilize a number of active peptides in vivo by inhibiting their proteolytic degradation.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3797
Author(s):  
Marta Olech ◽  
Wojciech Ziemichód ◽  
Natalia Nowacka-Jechalke

This review focuses on the natural sources and pharmacological activity of tormentic acid (TA; 2α,3β,19α-trihydroxyurs-2-en-28-oic acid). The current knowledge of its occurrence in various plant species and families is summarized. Biological activity (e.g., anti-inflammatory, antidiabetic, antihyperlipidemic, hepatoprotective, cardioprotective, neuroprotective, anti-cancer, anti-osteoarthritic, antinociceptive, antioxidative, anti-melanogenic, cytotoxic, antimicrobial, and antiparasitic) confirmed in in vitro and in vivo studies is compiled and described. Biochemical mechanisms affected by TA are indicated. Moreover, issues related to the biotechnological methods of production, effective eluents, and TA derivatives are presented.


2020 ◽  
Vol 21 (2) ◽  
pp. 470 ◽  
Author(s):  
Bashar Al-Zohily ◽  
Asma Al-Menhali ◽  
Salah Gariballa ◽  
Afrozul Haq ◽  
Iltaf Shah

In this review, we discuss the sources, formation, metabolism, function, biological activity, and potency of C3-epimers (epimers of vitamin D). We also determine the role of epimerase in vitamin D-binding protein (DBP) and vitamin D receptors (VDR) according to different subcellular localizations. The importance of C3 epimerization and the metabolic pathway of vitamin D at the hydroxyl group have recently been recognized. Here, the hydroxyl group at the C3 position is orientated differently from the alpha to beta orientation in space. However, the details of this epimerization pathway are not yet clearly understood. Even the gene encoding for the enzyme involved in epimerization has not yet been identified. Many published research articles have illustrated the biological activity of C3 epimeric metabolites using an in vitro model, but the studies on in vivo models are substantially inadequate. The metabolic stability of 3-epi-1α,25(OH)2D3 has been demonstrated to be higher than its primary metabolites. 3-epi-1 alpha, 25 dihydroxyvitamin D3 (3-epi-1α,25(OH)2D3) is thought to have fewer calcemic effects than non-epimeric forms of vitamin D. Some researchers have observed a larger proportion of total vitamin D as C3-epimers in infants than in adults. Insufficient levels of vitamin D were found in mothers and their newborns when the epimers were not included in the measurement of vitamin D. Oral supplementation of vitamin D has also been found to potentially cause increased production of epimers in mice but not humans. Moreover, routine vitamin D blood tests for healthy adults will not be significantly affected by epimeric interference using LC–MS/MS assays. Recent genetic models also show that the genetic determinants and the potential factors of C3-epimers differ from those of non-C3-epimers.Most commercial immunoassays techniques can lead to inaccurate vitamin D results due to epimeric interference, especially in infants and pregnant women. It is also known that the LC–MS/MS technique can chromatographically separate epimeric and isobaric interference and detect vitamin D metabolites sensitively and accurately. Unfortunately, many labs around the world do not take into account the interference caused by epimers. In this review, various methods and techniques for the analysis of C3-epimers are also discussed. The authors believe that C3-epimers may have an important role to play in clinical research, and further research is warranted.


Sign in / Sign up

Export Citation Format

Share Document