scholarly journals Controlled alteration of the shape and conformational stability of α-helical cell-lytic peptides: effect on mode of action and cell specificity

2005 ◽  
Vol 390 (1) ◽  
pp. 177-188 ◽  
Author(s):  
Igor Zelezetsky ◽  
Sabrina Pacor ◽  
Ulrike Pag ◽  
Niv Papo ◽  
Yechiel Shai ◽  
...  

A novel method, based on the rational and systematic modulation of macroscopic structural characteristics on a template originating from a large number of natural, cell-lytic, amphipathic α-helical peptides, was used to probe how the depths and shapes of hydrophobic and polar faces and the conformational stability affect antimicrobial activity and selectivity with respect to eukaryotic cells. A plausible mode of action explaining the peptides' behaviour in model membranes, bacteria and host cells is proposed. Cytotoxic activity, in general, correlated strongly with the hydrophobic sector depth, and required a majority of aliphatic residue side chains having more than two carbon atoms. It also correlated significantly with the size of polar sector residues, which determines the penetration depth of the peptide via the so-called snorkel effect. Both an oblique gradient of long to short aliphatic residues along the hydrophobic face and a stabilized helical structure increased activity against host cells but not against bacteria, as revealed by haemolysis, flow cytofluorimetric studies on lymphocytes and surface plasmon resonance studies with model phosphatidylcholine/cholesterol membranes. The mode of interaction changes radically for a peptide with a stable, preformed helical conformation compared with others that form a structure only on membrane binding. The close correlation between effects observed in biological and model systems suggests that the ‘carpet model’ correctly represents the type of peptides that are bacteria-selective, whereas the behaviour of those that lyse host cells is more complex.

Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 542
Author(s):  
Gustavo Penteado Battesini Carretero ◽  
Greice Kelle Viegas Saraiva ◽  
Magali Aparecida Rodrigues ◽  
Sumika Kiyota ◽  
Marcelo Porto Bemquerer ◽  
...  

In a large variety of organisms, antimicrobial peptides (AMPs) are primary defenses against pathogens. BP100 (KKLFKKILKYL-NH2), a short, synthetic, cationic AMP, is active against bacteria and displays low toxicity towards eukaryotic cells. BP100 acquires a α-helical conformation upon interaction with membranes and increases membrane permeability. Despite the volume of information available, the action mechanism of BP100, the selectivity of its biological effects, and possible applications are far from consensual. Our group synthesized a fluorescent BP100 analogue containing naphthalimide linked to its N-terminal end, NAPHT-BP100 (Naphthalimide-AAKKLFKKILKYL-NH2). The fluorescence properties of naphthalimides, especially their spectral sensitivity to microenvironment changes, are well established, and their biological activities against transformed cells and bacteria are known. Naphthalimide derived compounds are known to interact with DNA disturbing related processes as replication and transcription, and used as anticancer agents due to this property. A wide variety of techniques were used to demonstrate that NAPHT-BP100 bound to and permeabilized zwitterionic POPC and negatively charged POPC:POPG liposomes and, upon interaction, acquired a α-helical structure. Membrane surface high peptide/lipid ratios triggered complete permeabilization of the liposomes in a detergent-like manner. Membrane disruption was driven by charge neutralization, lipid aggregation, and bilayer destabilization. NAPHT-BP100 also interacted with double-stranded DNA, indicating that this peptide could also affect other cellular processes besides causing membrane destabilization. NAPHT-BP100 showed increased antibacterial and hemolytic activities, compared to BP100, and may constitute an efficient antimicrobial agent for dermatological use. By conjugating BP100 and naphthalimide DNA binding properties, NAPHT-BP100 bound to a large extent to the bacterial membrane and could more efficiently destabilize it. We also speculate that peptide could enter the bacteria cell and interact with its DNA in the cytoplasm.


1995 ◽  
Vol 307 (2) ◽  
pp. 535-541 ◽  
Author(s):  
J Johansson ◽  
G Nilsson ◽  
R Strömberg ◽  
B Robertson ◽  
H Jörnvall ◽  
...  

Native pulmonary-surfactant-associated lipopolypeptide SP-C, its chemically depalmitoylated form and several synthetic analogues lacking the palmitoylcysteine residues were analysed for secondary structure in phospholipid micelles and for biophysical activity in 1,2-dipalmitoyl-sn-glycero-3- phosphocholine/phosphatidylglycerol/palmitic acid (68:22:9, by wt.). Compared with the native molecule, with the entire poly-valyl part in a known alpha-helical conformation, depalmitoylated SP-C was found to be still mainly alpha-helical, but with an approx. 20% decrease in the helical content. A synthetic hybrid polypeptide where the entire poly-valyl alpha-helical part of native SP-C had been replaced with the amino acid sequence of a transmembrane helix of bacteriorhodopsin is also predominantly alpha-helical. In contrast, synthetic SP-C analogues lacking only the palmitoyl groups, by replacement of the palmitoylcysteine residues with cysteine, phenylalanine or serine, or lacking the positively charged amino acids by replacement with alanine, are considerably less alpha-helical than both native and depalmitoylated SP-C. The data indicate that the SP-C palmitoyl groups are important for maintenance of the alpha-helical conformation in parts of the polypeptide, and that the poly-valyl alpha-helical conformation is not fully formed in synthetic SP-C polypeptides. Furthermore, the helical structure of both native and depalmitoylated SP-C in dodecylphosphocholine micelles is very resistant to thermal denaturation, exhibiting ordered structure at 90 degrees C. The alpha-helical content grossly parallels the peptide-induced acceleration of the spreading of phospholipids at an air/water interface and the increase of surface pressure. The data suggest that the alpha-helical conformation itself, rather than just the covalent structure, is of prime importance for the biological function of synthetic pulmonary-surfactant peptides.


2014 ◽  
Vol 34 (6) ◽  
Author(s):  
Genadiy Fonar ◽  
Abraham O. Samson

Alzheimer's disease is the most common neurodegenerative disorder in the world. Its most significant symptoms are memory loss and decrease in cognition. Alzheimer's disease is characterized by aggregation of two proteins in the brain namely Aβ (amyloid β) and tau. Recent evidence suggests that the interaction of soluble Aβ with nAChR (nicotinic acetylcholine receptors) contributes to disease progression. In this study, we determine the NMR structure of an Aβ17–34 peptide solubilized by the addition of two glutamic acids at each terminus. Our results indicate that the Aβ peptide adopts an α-helical structure for residues 19–26 and 28–33. The α-helical structure is broken around residues S26, N27 and K28, which form a kink in the helical conformation. This α-helix was not described earlier in an aqueous solution without organic solvents, and at physiological conditions (pH 7). These data are in agreement with Aβ adopting an α-helical conformation in the membrane before polymerizing into amyloid β-sheets and provide insight into the intermediate state of Aβ in Alzheimer's disease.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2375
Author(s):  
Yayuan Tang ◽  
Jinfeng Sheng ◽  
Xuemei He ◽  
Jian Sun ◽  
Zhen Wei ◽  
...  

There have been few studies dealing with chemical elucidation and pharmacological potentials of water-soluble polysaccharides from jasmine tea, limiting their use in functional foods. In this study, water-soluble polysaccharides (named as JSP) were extracted from Jasminum sambac (L.) Aiton tea and fractionated to afford two sub-fractions (JSP-1 and JSP-2). The main structural characteristics of novel JSP sub-fractions were determined by high performance gel permeation chromatography, ultra-performance liquid chromatography-tandem mass spectrometry, Fourier transform infrared, and nuclear magnetic resonance analysis. Physiologically, the abilities of JSP-1 and JSP-2 to reduce ferric ions, scavenge DPPH and hydroxyl radicals, as well as protect islet cells were confirmed in vitro. JSP-1 exhibited better antioxidant and hypoglycemic activities than JSP-2. The molecular weights of JSP-1 and JSP-2 were 18.4 kDa and 14.1 kDa, respectively. JSP-1 was made up of glucose, galactose, rhamnose, xylose, arabinose, and galacturonic acid with molar ratios 1.14:4.69:1.00:9.92:13.79:4.09, whereas JSP-2 with a triple helical structure was composed of galactose, rhamnose, xylose, arabinose, and galacturonic acid as 3.80:1.00:8.27:11.85:5.05 of molar ratios. JSP-1 contains →1)-α-Galƒ-(3→, →1)-α-Galƒ-(2→, →1)-α-Araƒ-(5→, →1)-α-Araƒ-(3→, →1)-α-Araƒ-(3,5→, →1)-β-Xylp-(2→ and →1)-β-Xylp-(3→ residues in the backbone. These results open up new pharmacological prospects for the water-soluble polysaccharides extracted from jasmine tea.


2019 ◽  
Vol 20 (14) ◽  
pp. 3498 ◽  
Author(s):  
Adachi ◽  
Ishii ◽  
Kanno ◽  
Tetsui ◽  
Ishibashi ◽  
...  

Recognition of (1→3)-β-d-glucans (BGs) by invertebrate β-1,3-d-glucan recognition protein (BGRP) plays a significant role in the activation of Toll pathway and prophenoloxidase systems in insect host defense against fungal invasion. To examine the structure diversity of BGRPs for the recognition of physiochemically different BGs, the binding specificity of BGRPs cloned from four different insects to structure different BGs was characterized using ELISA. Recombinant BGRPs expressed as Fc-fusion proteins of human IgG1 bound to the solid phase of BGs. Based on the binding specificities, the BGRPs were categorized into two groups with different ultrastructures and binding characters; one group specifically binds BGs with triple-helical conformation, while the other group recognizes BGs with disordered conformations like single-helical or partially opened triple helix. The BGRPs from the silkworm and the Indian meal moth bound to the BGs with a triple-helical structure, whereas BGRPs from the red flour beetle and yellow mealworm beetle showed no binding to triple-helical BGs, but bound to alkaline-treated BGs that have a partially opened triple-helical conformation. This evidence suggests that the insect BGRPs can distinguish between different conformations of BGs and are equipped for determining the diversity of BG structures.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2079 ◽  
Author(s):  
Bethany Algayer ◽  
Ann O’Brien ◽  
Aaron Momose ◽  
Dennis J. Murphy ◽  
William Procopio ◽  
...  

Delivery of macromolecular cargos such as siRNA to the cytosol after endocytosis remains a critical challenge. Numerous approaches including viruses, lipid nanoparticles, polymeric constructs, and various peptide-based approaches have yet to yield a general solution to this delivery issue. In this manuscript, we describe our efforts to design novel endosomolytic peptides that could be used to facilitate the release of cargos from a late endosomal compartment. These amphiphilic peptides, based on a chimeric influenza hemagglutinin peptide/cell-penetrating peptide (CPP) template, utilize a pH-triggering mechanism in which the peptides are protonated after acidification of the endosome, and thereby adopt an alpha-helical conformation. The helical forms of the peptides are lytically active, while the non-protonated forms are much less or non-lytically active at physiological pH. Starting from an initial lead peptide (INF7-Tat), we systematically modified the sequence of the chimeric peptides to obtain peptides with greatly enhanced lytic activity that maintain good pH selectivity in a red blood cell hemolysis assay.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1877 ◽  
Author(s):  
Shi ◽  
Wang ◽  
Teraguchi ◽  
Aoki ◽  
Kaneko

Four kinds of newly synthesized achiral phenylacetylenes bearing a phenylhydrogalvinoxyl residue at 4-position were polymerized by using a chiral rhodium catalyst system, [Rh(nbd)B(C6H5)4] or [Rh(nbd)Cl]2 catalysts in the presence of chiral (R)-(+)- or (S)-(–)-1-phenylethylamine ((R)- or (S)-PEA) cocatalysts. Poly(m-HGDHPA) and poly(m-HGTHPA) in THF showed Cotton signals at the absorption regions of the main chain and hydrogalvinoxyl in the circular dichroism (CD) spectra. It indicated that excess of one-handed helical polyacetylene backbone was induced by helix-sense-selective polymerization (HSSP) under the asymmetric conditions despite the achiral monomer, and the hydrogalvinoxyl moieties were also arranged to form one-handed helical structure. However, there was no Cotton effect for poly(p-HGDHPA) and poly(p-HGTHPA) because the intramolecular hydrogen bonding did not act well to stabilize the helical conformation. The hydrogalvinoxyl units of poly(m-HGDHPA) and poly(m-HGTHPA) were converted to the corresponding galvinoxyl radicals after treatment with PbO2. In the CD spectra of the polyradicals, the Cotton effects decreased depending on their static stability of helical conformation, suggesting that reversal conformation of the polymer chain arose.


2010 ◽  
Vol 24 (3-4) ◽  
pp. 213-217 ◽  
Author(s):  
V. Profant ◽  
M. Šafarík ◽  
P. Bour ◽  
V. Baumruk

Raman and Raman optical activity (ROA) spectra of several oligo- and poly-L-proline samples of various chain lengths were measured in a wide frequency range between 120 and 1800 cm−1and analysed with respect to the main peptide chain conformation. Specifically, formation of polyproline II (PPII) helical conformation was studied in dependence on the increasing chain lengthNof the (L-proline)Nsample. Due to high sensitivity of the ROA technique to the conformational stability and rigidity of peptide chain we were able to determine the characteristic spectral peaks associated with formation of stable PPII helical conformation in studied systems. The most relevant peaks are located at 405, 535 and 945 cm−1. Additionally, based on our data analysis, we were able to determine the minimal length of (L-proline)Nchain necessary for creation of the stable PPII conformation asN= 6.


2009 ◽  
Vol 417 (3) ◽  
pp. 727-735 ◽  
Author(s):  
Francesca Morgera ◽  
Lisa Vaccari ◽  
Nikolinka Antcheva ◽  
Denis Scaini ◽  
Sabrina Pacor ◽  
...  

The human cathelicidin LL-37 displays both direct antibacterial activities and the capacity to modulate host-cell activities. These depend on structural characteristics that are subject to positive selection for variation, as observed in a previous analysis of the CAMP gene (encoding LL-37) in primates. The altered balance between cationic and anionic residues in different primate orthologues affects intramolecular salt-bridging and influences the stability of the helical conformation and tendency to aggregate in solution of the peptide. In the present study, we have analysed the effects of these structural variations on membrane interactions for human LL-37, rhesus RL-37 and orang-utan LL-37, using several complementary biophysical and biochemical methods. CD and ATR (attenuated total reflection)-FTIR (Fourier-transform IR) spectroscopy on model membranes indicate that RL-37, which is monomeric and unstructured in bulk solution [F-form (free form)], and human LL-37, which is partly structured and probably aggregated [A-form (aggregated form)], bind biological membranes in different manners. RL-37 may insert more deeply into the lipid bilayer than LL-37, which remains aggregated. AFM (atomic force microscopy) performed on the same supported bilayer as used for ATR-FTIR measurements suggests a carpet-like mode of permeabilization for RL37 and formation of more defined worm-holes for LL-37. Comparison of data from the biological activity on bacterial cells with permeabilization of model membranes indicates that the structure/aggregation state also affects the trajectory of the peptides from bulk solution through the outer cell-wall layers to the membrane. The results of the present study suggest that F-form cathelicidin orthologues may have evolved to have primarily a direct antimicrobial defensive capacity, whereas the A-forms have somewhat sacrificed this to gain host-cell modulating functions.


2016 ◽  
Vol 84 (9) ◽  
pp. 2662-2670 ◽  
Author(s):  
Christian González-Rivera ◽  
Anne M. Campbell ◽  
Stacey A. Rutherford ◽  
Tasia M. Pyburn ◽  
Nora J. Foegeding ◽  
...  

Helicobacter pylorisecretes a pore-forming VacA toxin that has structural features and activities substantially different from those of other known bacterial toxins. VacA can assemble into multiple types of water-soluble flower-shaped oligomeric structures, and most VacA activities are dependent on its capacity to oligomerize. The 88-kDa secreted VacA protein can undergo limited proteolysis to yield two domains, designated p33 and p55. The p33 domain is required for membrane channel formation and intracellular toxic activities, and the p55 domain has an important role in mediating VacA binding to cells. Previous studies showed that the p55 domain has a predominantly β-helical structure, but no structural data are available for the p33 domain. We report here the purification and analysis of a nonoligomerizing mutant form of VacA secreted byH. pylori. The nonoligomerizing 88-kDa mutant protein retains the capacity to enter host cells but lacks detectable toxic activity. Analysis of crystals formed by the monomeric protein reveals that the β-helical structure of the p55 domain extends into the C-terminal portion of p33. Fitting the p88 structural model into an electron microscopy map of hexamers formed by wild-type VacA (predicted to be structurally similar to VacA membrane channels) reveals that p55 and the β-helical segment of p33 localize to peripheral arms but do not occupy the central region of the hexamers. We propose that the amino-terminal portion of p33 is unstructured when VacA is in a monomeric form and that it undergoes a conformational change during oligomer assembly.


Sign in / Sign up

Export Citation Format

Share Document