scholarly journals Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus

2005 ◽  
Vol 390 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Carlos Martínez-Fleites ◽  
Miguel Ortíz-Lombardía ◽  
Tirso Pons ◽  
Nicolas Tarbouriech ◽  
Edward J. Taylor ◽  
...  

The endophytic Gram-negative bacterium Gluconacetobacter diazotrophicus SRT4 secretes a constitutively expressed levansucrase (LsdA, EC 2.4.1.10), which converts sucrose into fructooligosaccharides and levan. The enzyme is included in GH (glycoside hydrolase) family 68 of the sequence-based classification of glycosidases. The three-dimensional structure of LsdA has been determined by X-ray crystallography at a resolution of 2.5 Å (1 Å=0.1 nm). The structure was solved by molecular replacement using the homologous Bacillus subtilis (Bs) levansucrase (Protein Data Bank accession code 1OYG) as a search model. LsdA displays a five-bladed β-propeller architecture, where the catalytic residues that are responsible for sucrose hydrolysis are perfectly superimposable with the equivalent residues of the Bs homologue. The comparison of both structures, the mutagenesis data and the analysis of GH68 family multiple sequences alignment show a strong conservation of the sucrose hydrolytic machinery among levansucrases and also a structural equivalence of the Bs levansucrase Ca2+-binding site to the LsdA Cys339–Cys395 disulphide bridge, suggesting similar fold-stabilizing roles. Despite the strong conservation of the sucrose-recognition site observed in LsdA, Bs levansucrase and GH32 family Thermotoga maritima invertase, structural differences appear around residues involved in the transfructosylation reaction.

2019 ◽  
Vol 52 (6) ◽  
pp. 1422-1426
Author(s):  
Rajendran Santhosh ◽  
Namrata Bankoti ◽  
Adgonda Malgonnavar Padmashri ◽  
Daliah Michael ◽  
Jeyaraman Jeyakanthan ◽  
...  

Missing regions in protein crystal structures are those regions that cannot be resolved, mainly owing to poor electron density (if the three-dimensional structure was solved using X-ray crystallography). These missing regions are known to have high B factors and could represent loops with a possibility of being part of an active site of the protein molecule. Thus, they are likely to provide valuable information and play a crucial role in the design of inhibitors and drugs and in protein structure analysis. In view of this, an online database, Missing Regions in Polypeptide Chains (MRPC), has been developed which provides information about the missing regions in protein structures available in the Protein Data Bank. In addition, the new database has an option for users to obtain the above data for non-homologous protein structures (25 and 90%). A user-friendly graphical interface with various options has been incorporated, with a provision to view the three-dimensional structure of the protein along with the missing regions using JSmol. The MRPC database is updated regularly (currently once every three months) and can be accessed freely at the URL http://cluster.physics.iisc.ac.in/mrpc.


2006 ◽  
Vol 395 (3) ◽  
pp. 457-462 ◽  
Author(s):  
François Alberto ◽  
Emmanuelle Jordi ◽  
Bernard Henrissat ◽  
Mirjam Czjzek

Thermotoga maritima invertase (β-fructosidase), a member of the glycoside hydrolase family GH-32, readily releases β-D-fructose from sucrose, raffinose and fructan polymers such as inulin. These carbohydrates represent major carbon and energy sources for prokaryotes and eukaryotes. The invertase cleaves β-fructopyranosidic linkages by a double-displacement mechanism, which involves a nucleophilic aspartate and a catalytic glutamic acid acting as a general acid/base. The three-dimensional structure of invertase shows a bimodular enzyme with a five bladed β-propeller catalytic domain linked to a β-sandwich of unknown function. In the present study we report the crystal structure of the inactivated invertase in interaction with the natural substrate molecule α-D-galactopyranosyl-(1,6)-α-D-glucopyranosyl-β-D-fructofuranoside (raffinose) at 1.87 Å (1 Å=0.1 nm) resolution. The structural analysis of the complex reveals the presence of three binding-subsites, which explains why T. maritima invertase exhibits a higher affinity for raffinose than sucrose, but a lower catalytic efficiency with raffinose as substrate than with sucrose.


Author(s):  
CHANDRAYANI N. ROKDE ◽  
DR.MANALI KSHIRSAGAR

Protein structure prediction (PSP) from amino acid sequence is one of the high focus problems in bioinformatics today. This is due to the fact that the biological function of the protein is determined by its three dimensional structure. The understanding of protein structures is vital to determine the function of a protein and its interaction with DNA, RNA and enzyme. Thus, protein structure is a fundamental area of computational biology. Its importance is intensed by large amounts of sequence data coming from PDB (Protein Data Bank) and the fact that experimentally methods such as X-ray crystallography or Nuclear Magnetic Resonance (NMR)which are used to determining protein structures remains very expensive and time consuming. In this paper, different types of protein structures and methods for its prediction are described.


2020 ◽  
Vol 5 (7) ◽  
Author(s):  
Lucas Paul ◽  
Celestin N. Mudogo ◽  
Kelvin M. Mtei ◽  
Revocatus L. Machunda ◽  
Fidele Ntie-Kang

AbstractCassava is a strategic crop, especially for developing countries. However, the presence of cyanogenic compounds in cassava products limits the proper nutrients utilization. Due to the poor availability of structure discovery and elucidation in the Protein Data Bank is limiting the full understanding of the enzyme, how to inhibit it and applications in different fields. There is a need to solve the three-dimensional structure (3-D) of linamarase from cassava. The structural elucidation will allow the development of a competitive inhibitor and various industrial applications of the enzyme. The goal of this review is to summarize and present the available 3-D modeling structure of linamarase enzyme using different computational strategies. This approach could help in determining the structure of linamarase and later guide the structure elucidation in silico and experimentally.


2020 ◽  
Vol 13 (636) ◽  
pp. eaaz5599 ◽  
Author(s):  
Kelan Chen ◽  
Richard W. Birkinshaw ◽  
Alexandra D. Gurzau ◽  
Iromi Wanigasuriya ◽  
Ruoyun Wang ◽  
...  

Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) is an epigenetic regulator in which polymorphisms cause the human developmental disorder, Bosma arhinia micropthalmia syndrome, and the degenerative disease, facioscapulohumeral muscular dystrophy. SMCHD1 is considered a noncanonical SMC family member because its hinge domain is C-terminal, because it homodimerizes rather than heterodimerizes, and because SMCHD1 contains a GHKL-type, rather than an ABC-type ATPase domain at its N terminus. The hinge domain has been previously implicated in chromatin association; however, the underlying mechanism involved and the basis for SMCHD1 homodimerization are unclear. Here, we used x-ray crystallography to solve the three-dimensional structure of the Smchd1 hinge domain. Together with structure-guided mutagenesis, we defined structural features of the hinge domain that participated in homodimerization and nucleic acid binding, and we identified a functional hotspot required for chromatin localization in cells. This structure provides a template for interpreting the mechanism by which patient polymorphisms within the SMCHD1 hinge domain could compromise function and lead to facioscapulohumeral muscular dystrophy.


Author(s):  
Gabriel Jan Abrahams ◽  
Janet Newman

Crystallization is in many cases a critical step for solving the three-dimensional structure of a protein molecule. Determining which set of chemicals to use in the initial screen is typically agnostic of the protein under investigation; however, crystallization efficiency could potentially be improved if this were not the case. Previous work has assumed that sequence similarity may provide useful information about appropriate crystallization cocktails; however, the authors are not aware of any quantitative verification of this assumption. This research investigates whether, given current information, one can detect any correlation between sequence similarity and crystallization cocktails. BLAST was used to quantitate the similarity between protein sequences in the Protein Data Bank, and this was compared with three estimations of the chemical similarities of the respective crystallization cocktails. No correlation was detected between proteins of similar (but not identical) sequence and their crystallization cocktails, suggesting that methods of determining screens based on this assumption are unlikely to result in screens that are better than those currently in use.


Author(s):  
SANGEETA RANI ◽  
KAVITA GAHLOT ◽  
ARVIND KUMAR

Objective: The purpose of this study was to investigate the diabetic effect of phytocompounds isolated from Cressa cretica Linn. using spectroscopic analysis and molecular docking studies. Methods: Coarse powder of the whole plant of C. cretica was extracted with methanol, extracted part was subjected to silica column isolation, and two compounds: 2-Isopropyl-4-(1-methyl-dodeca-2,4-dienyloxy)-benzene-1,3,5-triol (Compound CN-01) and 11-Methyl-dodeca-2,4,6,8,10-pentenoic acid 2,3-dihydroxy-5-methyl-phenyl ester (Compound CN-02) were isolated in pure form. The three-dimensional structure of target protein was downloaded from PDB (www.rcsb.org) Protein Data Bank, Ligand file CN – 01 and CN – 02 were converted to MDL Molfile (V2000) format using ChemSketch 2017.2.1. These files could not be used directly in AutoDock 4.0 tools; thus, they were first converted to PDB files using an open babel tool. Results: Compounds were revealed through spectroscopic analysis and screened using AutoDock 4.0 tools. Docking study recommended that CN – 01 and CN – 02 an existing phytochemical from the plant of C. cretica had the highest fitness docking score and hence could be a potent antidiabetic drug. Conclusion: In this investigation, we docked the receptor (glycogen phosphorylase protein) holds a promising lead target formation against diabetes based on molecular docking analysis (minimum hydrogen bond length and maximum docked score). Thus, these compounds can be effectively used as drugs for treating diabetes which is predicted on the basis of docking scores.


1980 ◽  
Vol 58 (16) ◽  
pp. 1633-1638 ◽  
Author(s):  
George I. Birnabaum ◽  
Kyoichi A. Watanabe ◽  
Jack J. Fox

The three-dimensional structure of pseudoisocytidine hydrochloride was determined by X-ray crystallography. The crystals belong to the triclinic space group P1 and the cell dimensions are a = 6.623(2), b = 8.053(2), c = 6.201(2) Å, α = 108.35(2), β = 101.36(2), γ = 93.54(2) °. Intensity data were measured with a diffractometer and the structure was solved by a combination of heavy-atom and direct methods. Least-squares refinement, which included hydrogen atoms, converged at R = 0.040. The conformation about the glycosyl bond is anti (χCC = 21.6°), the pucker of the furanose ring is C(1′)exo, and the conformation of the —CH2OH side chain is gauche–trans (t). An examination of bond lengths indicates that of the three main resonance forms of the isocytosine cation the fully conjugated one contributes more to the structure than the cross-conjugated one. Bond angles in the sugar ring reflect its rare conformation.


2016 ◽  
Vol 82 (16) ◽  
pp. 4975-4981 ◽  
Author(s):  
Lorena Rodríguez-Rubio ◽  
Hans Gerstmans ◽  
Simon Thorpe ◽  
Stéphane Mesnage ◽  
Rob Lavigne ◽  
...  

ABSTRACTBacteriophage-encoded endolysins are highly diverse enzymes that cleave the bacterial peptidoglycan layer. Current research focuses on their potential applications in medicine, in food conservation, and as biotechnological tools. Despite the wealth of applications relying on the use of endolysin, little is known about the enzymatic properties of these enzymes, especially in the case of endolysins of bacteriophages infecting Gram-negative species. Automated genome annotations therefore remain to be confirmed. Here, we report the biochemical analysis and cleavage site determination of a novelSalmonellabacteriophage endolysin, Gp110, which comprises an uncharacterizeddomain ofunknownfunction (DUF3380; pfam11860) in its C terminus and shows a higher specific activity (34,240 U/μM) than that of 14 previously characterized endolysins active against peptidoglycan from Gram-negative bacteria (corresponding to 1.7- to 364-fold higher activity). Gp110 is a modular endolysin with an optimal pH of enzymatic activity of pH 8 and elevated thermal resistance. Reverse-phase high-performance liquid chromatography (RP-HPLC) analysis coupled to mass spectrometry showed that DUF3380 hasN-acetylmuramidase (lysozyme) activity cleaving the β-(1,4) glycosidic bond betweenN-acetylmuramic acid andN-acetylglucosamine residues. Gp110 is active against directly cross-linked peptidoglycans with various peptide stem compositions, making it an attractive enzyme for developing novel antimicrobial agents.IMPORTANCEWe report the functional and biochemical characterization of theSalmonellaphage endolysin Gp110. This endolysin has a modular structure with an enzymatically active domain and a cell wall binding domain. The enzymatic activity of this endolysin exceeds that of all other endolysins previously characterized using the same methods. A domain of unknown function (DUF3380) is responsible for this high enzymatic activity. We report that DUF3380 hasN-acetylmuramidase activity against directly cross-linked peptidoglycans with various peptide stem compositions. This experimentally verified activity allows better classification and understanding of the enzymatic activities of endolysins, which mostly are inferred by sequence similarities. Three-dimensional structure predictions for Gp110 suggest a fold that is completely different from that of known structures of enzymes with the same peptidoglycan cleavage specificity, making this endolysin quite unique. All of these features, combined with increased thermal resistance, make Gp110 an attractive candidate for engineering novel endolysin-based antibacterials.


2018 ◽  
Vol 19 (11) ◽  
pp. 3401 ◽  
Author(s):  
Ashutosh Srivastava ◽  
Tetsuro Nagai ◽  
Arpita Srivastava ◽  
Osamu Miyashita ◽  
Florence Tama

Protein structural biology came a long way since the determination of the first three-dimensional structure of myoglobin about six decades ago. Across this period, X-ray crystallography was the most important experimental method for gaining atomic-resolution insight into protein structures. However, as the role of dynamics gained importance in the function of proteins, the limitations of X-ray crystallography in not being able to capture dynamics came to the forefront. Computational methods proved to be immensely successful in understanding protein dynamics in solution, and they continue to improve in terms of both the scale and the types of systems that can be studied. In this review, we briefly discuss the limitations of X-ray crystallography in studying protein dynamics, and then provide an overview of different computational methods that are instrumental in understanding the dynamics of proteins and biomacromolecular complexes.


Sign in / Sign up

Export Citation Format

Share Document