Effect of glycosylation on the extracellular domain of the Ag43 bacterial autotransporter: enhanced stability and reduced cellular aggregation

2008 ◽  
Vol 412 (3) ◽  
pp. 563-577 ◽  
Author(s):  
Stine K. Knudsen ◽  
Allan Stensballe ◽  
Magnus Franzmann ◽  
Uffe B. Westergaard ◽  
Daniel E. Otzen

Autotransporters constitute the biggest group of secreted proteins in Gram-negative bacteria and contain a membrane-bound β-domain and a passenger domain secreted to the extracellular environment via an unusually long N-terminal sequence. Several passenger domains are known to be glycosylated by cytosolic glycosyl transferases, promoting bacterial attachment to mammalian cells. In the present study we describe the effect of glycosylation on the extracellular passenger domain of the Escherichia coli autotransporter Ag43α, which induces frizzy colony morphology and cell settling. We identify 16 glycosylation sites and suggest two possible glycosylation motifs for serine and threonine residues. Glycosylation stabilizes against thermal and chemical denaturation and increases refolding kinetics. Unexpectedly, glycosylation also reduces the stabilizing effect of Ca2+ ions, removes the ability of Ca2+ to promote cell adhesion, reduces the ability of Ag43α-containing cells to form bacterial amyloid and increases the susceptibility of the resulting amyloid to proteolysis. In addition, our results indicate that Ag43α folds without a stable intermediate, unlike pertactin, indicating that autotransporters may arrive at the native state by a variety of different mechanisms despite a common overall structure. A small but significant fraction of Ag43α can survive intact in the periplasm if expressed without the β-domain, suggesting that it is able to adopt a protease-resistant structure prior to translocation across the membrane. The present study demonstrates that glycosylation may play significant roles in structural and functional properties of bacterial autotransporters at many different levels.

2010 ◽  
Vol 55 (No. 8) ◽  
pp. 359-368 ◽  
Author(s):  
M. Atef Yekta ◽  
F. Verdonck ◽  
W. Van Den Broeck ◽  
BM Goddeeris ◽  
E. Cox ◽  
...  

Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 strains are associated with haemorraghic colitis and haemolytic uremic syndrome (HUS) in humans. Cattle are a reservoir of E. coli O157:H7. We studied the ability of bovine and human lactoferrin, two natural antimicrobial proteins present in milk, to inhibit E. coli O157:H7 growth and attachment to a human epithelial colorectal adenocarcinoma cell line (Caco-2). The direct antibacterial effect of bLF on E. coli O157:H7 was stronger than that of hLF. Nevertheless, both lactoferrins had bacteriostatic effects even at high concentrations (10 mg/ml), suggesting blocking of LF activity by a yet undefined bacterial defence mechanism. Additionally, both lactoferrins significantly inhibited E. coli O157:H7 attachment to Caco-2 cells. However, hLF was more effective than bLF, probably due to more efficient binding of bLF to intelectin present on human enterocytes leading to uptake and thus removal of bLF from the extracellular environment. Inhibition of bacterial attachment to Caco-2 cells was at least partly due to the catalytic effect of lactoferrins on the type III secreted proteins EspA and EspB


1977 ◽  
Vol 168 (1) ◽  
pp. 1-8 ◽  
Author(s):  
J C Ramsey ◽  
W J Steele

Free loosely bound and tightly bound polyribosomes were separated from rat liver homogenate by salt extraction followed by differential centrifugation, and several of their structural and functional properties were compared to resolve the existence of loosely bound polyribosomes and verify the specificity of the separation. The free and loosely bound polyribosomes have similar sedimentation profiles and polyribosome contents, their subunit proteins have similar electrophoretic patterns and their products of protein synthesis in vitro show a close correspondence in size and amounts synthesized. In contrast, the tightly bound polyribosomes have different properties from those of the free and loosely bound polyribosomes; their average size is significantly smaller; their polyribosome content is higher; their 60 S-subunit proteins lack two components and contain four or more components not found elsewhere; their products of protein synthesis in vitro differ in size and amounts synthesized. These observations show that rat liver membranes entrap a large fraction of the free polyribosomes at low salt concentrations and that these polyribosomes are similar to those of the free-polyribosome fraction and are different from those of the tightly bound polyribosome fraction in size, structure and function.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 939
Author(s):  
Flávia Fonseca Bagno ◽  
Lara Carvalho Godói ◽  
Maria Marta Figueiredo ◽  
Sarah Aparecida Rodrigues Sérgio ◽  
Thaís de Fátima Silva Moraes ◽  
...  

Chikungunya virus (CHIKV) is a mosquito-borne pathogen that causes a disease characterized by the acute onset of fever accompanied by arthralgia and intense joint pain. Clinical similarities and cocirculation of this and other arboviruses in many tropical countries highlight the necessity for efficient and accessible diagnostic tools. CHIKV envelope proteins are highly conserved among alphaviruses and, particularly, the envelope 2 glycoprotein (CHIKV-E2) appears to be immunodominant and has a considerable serodiagnosis potential. Here, we investigate how glycosylation of CHIKV-E2 affects antigen/antibody interaction and how this affects the performance of CHIKV-E2-based Indirect ELISA tests. We compare two CHIKV-E2 recombinant antigens produced in different expression systems: prokaryotic-versus eukaryotic-made recombinant proteins. CHIKV-E2 antigens are expressed either in E. coli BL21(DE3)—a prokaryotic system unable to produce post-translational modifications—or in HEK-293T mammalian cells—a eukaryotic system able to add post-translational modifications, including glycosylation sites. Both prokaryotic and eukaryotic recombinant CHIKV-E2 react strongly to anti-CHIKV IgG antibodies, showing accuracy levels that are higher than 90%. However, the glycan-added viral antigen presents better sensitivity and specificity (85 and 98%) than the non-glycosylated antigen (81 and 71%, respectively) in anti-CHIKV IgM ELISA assays.


2002 ◽  
Vol 283 (3) ◽  
pp. F492-F498 ◽  
Author(s):  
Brian S. Cummings ◽  
Jane McHowat ◽  
Rick G. Schnellmann

Phospholipase A2(PLA2) hydrolyzes the sn-2 ester bond in phospholipids, releasing a fatty acid and a lysophospholipid. Recently, a novel 85-kDa membrane-bound-Ca2+-independent PLA2 (iPLA2) was identified in insect and bacterial cells transfected with candidate PLA2 sequences. However, few data exist demonstrating a membrane-bound-iPLA2 in mammalian cells, its subcellular localization, or its physiological role. Herein, we demonstrate the expression of an 85-kDa endoplasmic reticulum (ER)-Ca2+-iPLA2 (ER-iPLA2) in rabbit renal proximal tubule cells (RPTC) that is plasmalogen selective and is inhibited by the specific Ca2+-iPLA2inhibitor bromoenol lactone (BEL). RPTC exposed to tert-butylhydroperoxide for 24 h exhibited 20% oncosis compared with 2% in controls. Inhibition of ER-iPLA2 with BEL before tert-butylhydroperoxide exposure resulted in 50% oncosis. To determine whether this effect was common to oxidants, we tested the ability of BEL to potentiate oncosis induced by cumene hydroperoxide, menadione, duraquinone, cisplatin, and the nonoxidant antimycin A. All oxidants tested produced oncosis after 24 h, and prior inhibition of ER-iPLA2 potentiated oncosis at least twofold. In contrast, inhibition of ER-iPLA2 did not alter antimycin A-induced oncosis. Lipid peroxidation increased from 1.4- to 5.2-fold in RPTC treated with BEL before oxidant exposure, whereas no change was seen in antimycin A-treated RPTC. These results are the first to demonstrate the expression and subcellular localization of an ER-iPLA2. These results also suggest that ER-iPLA2 functions to protect against oxidant-induced lipid peroxidation and oncosis.


2020 ◽  
Vol 48 (10) ◽  
pp. 5442-5456 ◽  
Author(s):  
Minjung Kwon ◽  
Kihyun Park ◽  
Kwangbeom Hyun ◽  
Jeong-Heon Lee ◽  
Linjiao Zhou ◽  
...  

Abstract In mammalian cells, distinct H3K4 methylation states are created by deposition of methyl groups by multiple complexes of histone lysine methyltransferase 2 (KMT2) family proteins. For comprehensive analyses that directly compare the catalytic properties of all six human KMT2 complexes, we employed a biochemically defined system reconstituted with recombinant KMT2 core complexes (KMT2CoreCs) containing minimal components required for nucleosomal H3K4 methylation activity. We found that each KMT2CoreC generates distinct states and different levels of H3K4 methylation, and except for MLL3 all are stimulated by H2Bub. Notably, SET1BCoreC exhibited the strongest H3K4 methylation activity and, to our surprise, did not require H2B ubiquitylation (H2Bub); in contrast, H2Bub was required for the H3K4me2/3 activity of the paralog SET1ACoreC. We also found that WDR5, RbBP5, ASH2L and DPY30 are required for efficient H3K4 methyltransferase activities of all KMT2CoreCs except MLL3, which could produce H3K4me1 in the absence of WDR5. Importantly, deletion of the PHD2 domain of CFP1 led to complete loss of the H3K4me2/3 activities of SET1A/BCoreCs in the presence of H2Bub, indicating a critical role for this domain in the H2Bub-stimulated H3K4 methylation. Collectively, our results suggest that each KMT2 complex methylates H3K4 through distinct mechanisms in which individual subunits differentially participate.


1994 ◽  
Vol 302 (2) ◽  
pp. 451-454 ◽  
Author(s):  
M H Lafrance ◽  
C Vézina ◽  
Q Wang ◽  
G Boileau ◽  
P Crine ◽  
...  

Neutral endopeptidase (NEP, EC 3.4.24.11) is a major ectoenzyme of the brush-border membrane. The ectodomain of NEP contains five putative N-glycosylation sites. In order to determine the role of the addition of sugar moieties on the activity and intracellular transport of NEP, we have used site-directed mutagenesis to remove all or some of the five potential sites of sugar addition in membrane-bound and secreted forms of the enzyme. Expression of NEP glycosylation mutants in COS-1 cells showed that all five sites are used for sugar addition. Immunoblotting of NEP in COS-1 cell extracts or culture media indicated that total expression of normal membrane-bound NEP was not affected by mutations at glycosylation sites, whereas this expression level appeared to be strictly dependent on the number of glycosylation sites retained on the soluble form. The transport to the cell surface was also reduced by decreased glycosylation, but again the phenomenon appeared more drastic in the case of the soluble form than for the membrane-bound enzyme. Enzyme activity was decreased by deglycosylation. However, the presence of either of two crucial sites (sites 1 and 5; numbered from the N-terminus of the protein) was sufficient to recover close-to-normal enzymic activities. Transport to the cell surface and enzyme activity of NEP are thus both dependent on sugar residues, probably through different conformational constraints. These constraints seem to be local for enzyme activity but more global for transport to the cell surface.


2004 ◽  
Vol 186 (23) ◽  
pp. 8058-8065 ◽  
Author(s):  
Orla Sherlock ◽  
Mark A. Schembri ◽  
Andreas Reisner ◽  
Per Klemm

ABSTRACT Diarrhea-causing Escherichia coli strains are responsible for numerous cases of gastrointestinal disease and constitute a serious health problem throughout the world. The ability to recognize and attach to host intestinal surfaces is an essential step in the pathogenesis of such strains. AIDA is a potent bacterial adhesin associated with some diarrheagenic E. coli strains. AIDA mediates bacterial attachment to a broad variety of human and other mammalian cells. It is a surface-displayed autotransporter protein and belongs to the selected group of bacterial glycoproteins; only the glycosylated form binds to mammalian cells. Here, we show that AIDA possesses self-association characteristics and can mediate autoaggregation of E. coli cells. We demonstrate that intercellular AIDA-AIDA interaction is responsible for bacterial autoaggregation. Interestingly, AIDA-expressing cells can interact with antigen 43 (Ag43)-expressing cells, which is indicative of an intercellular AIDA-Ag43 interaction. Additionally, AIDA expression dramatically enhances biofilm formation by E. coli on abiotic surfaces in flow chambers.


2006 ◽  
Vol 81 (4) ◽  
pp. 1821-1837 ◽  
Author(s):  
William Dowling ◽  
Elizabeth Thompson ◽  
Catherine Badger ◽  
Jenny L. Mellquist ◽  
Aura R. Garrison ◽  
...  

ABSTRACT The Ebola virus (EBOV) envelope glycoprotein (GP) is the primary target of protective immunity. Mature GP consists of two disulfide-linked subunits, GP1 and membrane-bound GP2. GP is highly glycosylated with both N- and O-linked carbohydrates. We measured the influences of GP glycosylation on antigenicity, immunogenicity, and protection by testing DNA vaccines comprised of GP genes with deleted N-linked glycosylation sites or with deletions in the central hypervariable mucin region. We showed that mutation of one of the two N-linked GP2 glycosylation sites was highly detrimental to the antigenicity and immunogenicity of GP. Our data indicate that this is likely due to the inability of GP2 and GP1 to dimerize at the cell surface and suggest that glycosylation at this site is required for achieving the conformational integrity of GP2 and GP1. In contrast, mutation of two N-linked sites on GP1, which flank previously defined protective antibody epitopes on GP, may enhance immunogenicity, possibly by unmasking epitopes. We further showed that although deleting the mucin region apparently had no effect on antigenicity in vitro, it negatively impacted the elicitation of protective immunity in mice. In addition, we confirmed the presence of previously identified B-cell and T-cell epitopes in GP but show that when analyzed individually none of them were neither absolutely required nor sufficient for protective immunity to EBOV. Finally, we identified other potential regions of GP that may contain relevant antibody or T-cell epitopes.


Author(s):  
Valeria Teso ◽  
Juliana Giménez

Sperm ultrastructure in two species of the marine snail family Olividae is examined. Euspermatozoa of both species are composed of a conical, membrane-bound acrosomal vesicle; an axial rod and a basal plate similar in both species; a solid and highly electron-dense nucleus; an elongate midpiece consisting of the axoneme sheathed by helical mitochondrial elements; an elongate glycogen piece; a double electron-dense ring at the junction of the midpiece and glycogen piece; and a free tail region. The slight narrowing in the acrosomal vesicle invagination is situated in different levels between Olivancillaria deshayesiana and Olivancillaria carcellesi. This morphology could be considered as a specific character. The length of the nucleus in O. carcellesi and in O. deshayesiana is shorter than that of other neogastropods, and could be diagnostic at family level.


Sign in / Sign up

Export Citation Format

Share Document