Pseudoproteases: mechanisms and function

2015 ◽  
Vol 468 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Simone L. Reynolds ◽  
Katja Fischer

Catalytically inactive enzymes (also known as pseudoproteases, protease homologues or paralogues, non-peptidase homologues, non-enzymes and pseudoenzymes) have traditionally been hypothesized to act as regulators of their active homologues. However, those that have been characterized demonstrate that inactive enzymes have an extensive and expanding role in biological processes, including regulation, inhibition and immune modulation. With the emergence of each new genome, more inactive enzymes are being identified, and their abundance and potential as therapeutic targets has been realized. In the light of the growing interest in this emerging field the present review focuses on the classification, structure, function and mechanism of inactive enzymes. Examples of how inactivity is defined, how this is reflected in the structure, functions of inactive enzymes in biological processes and their mode of action are discussed.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yanan Jiang ◽  
Xiuyun Shen ◽  
Moyondafoluwa Blessing Fasae ◽  
Fengnan Zhi ◽  
Lu Chai ◽  
...  

Hepatocellular carcinoma (HCC) is among the most common and lethal form of cancer worldwide. However, its diagnosis and treatment are still dissatisfactory, due to limitations in the understanding of its pathogenic mechanism. Therefore, it is important to elucidate the molecular mechanisms and identify novel therapeutic targets for HCC. Circadian rhythm-related genes control a variety of biological processes. These genes play pivotal roles in the initiation and progression of HCC and are potential diagnostic markers and therapeutic targets. This review gives an update on the research progress of circadian rhythms, their effects on the initiation, progression, and prognosis of HCC, in a bid to provide new insights for the research and treatment of HCC.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1983 ◽  
Author(s):  
Mickael M Cohen ◽  
David Tareste

Mitochondria undergo frequent fusion and fission events to adapt their morphology to cellular needs. Homotypic docking and fusion of outer mitochondrial membranes are controlled by Mitofusins, a set of large membrane-anchored GTPase proteins belonging to the dynamin superfamily. Mitofusins include, in addition to their GTPase and transmembrane domains, two heptad repeat domains, HR1 and HR2. All four regions are crucial for Mitofusin function, but their precise contribution to mitochondrial docking and fusion events has remained elusive until very recently. In this commentary, we first give an overview of the established strategies employed by various protein machineries distinct from Mitofusins to mediate membrane fusion. We then present recent structure–function data on Mitofusins that provide important novel insights into their mode of action in mitochondrial fusion.


1994 ◽  
Vol 72 (01) ◽  
pp. 001-015 ◽  
Author(s):  
Juan J Calvete

SummaryThe glycoprotein (GP) IIb/IIIa, a Ca2+-dependent heterodimer, is the major integrin on the platelet plasma membrane. On resting platelets GPIIb/IIIa is maintained in an inactive conformation and serves as a low affinity adhesion receptor for surface-coated fibrinogen, whereas upon platelet activation signals within the cytoplasma alter the receptor function of GPIIb/IIIa (inside-out signalling), which undergoes a measurable conformational change within its exoplasmic domains, and becomes a competent receptor for soluble fibrinogen and some other RGD sequence-containing plasma adhesive proteins. Upon ligand binding, further structural alterations trigger the association of receptor-occupied GPIIb/IIIa complexes with themselves within the plane of the membrane. The simultaneous binding of dimeric fibrinogen molecules to GPIIb/IIIa clusters on adjacent platelets leads to platelet aggregation, which promotes attachment of fibrinogen-GPIIb/IIIa clusters to the cytoskeleton (outside-in signalling). This, in turn, provides the necessary physical link for clot retraction to occur, and generates a cascade of intracellular biochemical reactions which result in the formation of a multiprotein signalling complex at the cytoplasmic domains of GPIIb/IIIa. Glycoprotein IMIIa, also called αIIbβ3 in the integrin nomenclature, plays thus a primary role in both platelet adhesion and thrombus formation at the site of vascular injury. In addition, the human glycoprotein Ilb/IIIa complex is the most thoroughly studied integrin receptor, its molecular biology and major features of its primary structure having been elucidated mainly during the last six years. Furthermore, localization of functionally relevant monoclonal antibody epitopes, determination of the cross-linking sites of inhibitory peptide ligands, proteolytic dissection of the isolated integrin, and analysis of natural and artificial GPIIb/IIIa mutants have recently provided a wealth of information regarding structure-function relationships of human GPIIb/IIIa. The aim of this review is to summarize these many structural and functional data in the perspective of an emerging model. Although most of the interpretations based on structural elements of this initial biochemical model require independent confirmation, they may help us to understand the structure-function relationship of this major platelet receptor, and of other members of the integrin superfamily, as well as to perform further investigations in order to test current hypotheses.


2012 ◽  
Vol 40 (4) ◽  
pp. 836-841 ◽  
Author(s):  
Jonathan Houseley

Unstable non-coding RNAs are produced from thousands of loci in all studied eukaryotes (and also prokaryotes), but remain of largely unknown function. The present review summarizes the mechanisms of eukaryotic non-coding RNA degradation and highlights recent findings regarding function. The focus is primarily on budding yeast where the bulk of this research has been performed, but includes results from higher eukaryotes where available.


2020 ◽  
Vol 13 (1) ◽  
pp. 31-79
Author(s):  
Dan Priel

AbstractA popular view among tort theorists is that an explanation of tort law must take account its “structure,” since this structure constitutes the law’s “self-understanding.” This view is used to both criticize competing functional accounts of tort law, especially economic ones, that are said to ignore tort law’s structure, and, more constructively, as a basis for explaining various tort doctrines. In this essay, I consider this argument closely and conclude that it is faulty. To be valid, one needs a non-question begging way of identifying the essence of tort law. I argue that law’s “self-understanding” can only make sense if it means the understanding of certain people. Examining those, I conclude that the claim of structuralists is false, for there are many people who take its function to be central. I then further show that if one wishes to understand the development of tort law’s doctrine one must take both structure and function into account. I demonstrate this claim by examining the development of the doctrine dealing with causal uncertainty and vicarious liability.


2017 ◽  
Vol 14 (135) ◽  
pp. 20170484 ◽  
Author(s):  
Matthew D. B. Jackson ◽  
Salva Duran-Nebreda ◽  
George W. Bassel

Multicellularity and cellular cooperation confer novel functions on organs following a structure–function relationship. How regulated cell migration, division and differentiation events generate cellular arrangements has been investigated, providing insight into the regulation of genetically encoded patterning processes. Much less is known about the higher-order properties of cellular organization within organs, and how their functional coordination through global spatial relations shape and constrain organ function. Key questions to be addressed include: why are cells organized in the way they are? What is the significance of the patterns of cellular organization selected for by evolution? What other configurations are possible? These may be addressed through a combination of global cellular interaction mapping and network science to uncover the relationship between organ structure and function. Using this approach, global cellular organization can be discretized and analysed, providing a quantitative framework to explore developmental processes. Each of the local and global properties of integrated multicellular systems can be analysed and compared across different tissues and models in discrete terms. Advances in high-resolution microscopy and image analysis continue to make cellular interaction mapping possible in an increasing variety of biological systems and tissues, broadening the further potential application of this approach. Understanding the higher-order properties of complex cellular assemblies provides the opportunity to explore the evolution and constraints of cell organization, establishing structure–function relationships that can guide future organ design.


2017 ◽  
Vol 37 (2) ◽  
pp. 51-70 ◽  
Author(s):  
Muhammad Iqbal ◽  
Saqib Ali ◽  
Ali Haider ◽  
Nasir Khalid

AbstractOrganotin complexes are being extensively studied and screened for their therapeutic potential. Although many recent advances and achievements in this field have been made, the exact mode of action of these complexes is yet to be unveiled. In the present review, an attempt has been made to correlate the therapeutic properties of organotin complexes with their structural features and the environment in which these interact with biological systems. The mechanism, various modes of interaction with biological systems, and physiological target sites of organotin complexes have been highlighted as well.


Author(s):  
Meng Gao ◽  
Ping Li ◽  
Zhengding Su ◽  
Yongqi Huang

Intrinsically disordered proteins (IDPs) are abundant in all species. Their discovery challenges the traditional “sequence−structure−function” paradigm of protein science, because IDPs play important roles in various biological processes without preformed...


Sign in / Sign up

Export Citation Format

Share Document