scholarly journals Lysyl hydroxylation in collagens from hyperplastic callus and embryonic bones

1992 ◽  
Vol 282 (2) ◽  
pp. 313-318 ◽  
Author(s):  
H W Lehmann ◽  
M Bodo ◽  
C Frohn ◽  
A Nerlich ◽  
D Rimek ◽  
...  

Tissue from two patients with osteogenesis imperfecta suffering from a hyperplastic callus was studied. Although collagen type I from the compact bone and the skin and fibroblast cultures of these patients showed normal lysyl hydroxylation, collagen types I, II, III and V from the callus tissue were markedly overhydroxylated. Furthermore, the overhydroxylation of lysine residues covered almost equally the entire alpha 1 (I) collagen chain, as demonstrated by the analysis of individual CNBr-derived peptides. In addition, collagen type I was isolated from femoral compact bone of 33 individuals who died between the 16th week of gestational age and 22 years. Lysyl hydroxylation rapidly decreased in both collagen alpha 1 (I) and alpha 2 (I) chains during fetal development, and only little in the postnatal period. The transient increase in lysyl hydroxylation and the involvement of various collagen types in callus tissue argue for a regulatory mechanism that may operate in bone repair and during fetal development.

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Eleni Petra ◽  
Tianlin He ◽  
Agnieszka Latosinska ◽  
Rafael Stroggilos ◽  
Harald Mischak ◽  
...  

Abstract Background and Aims The cardiorenal syndrome (CRS) reflects the complex interplay between kidney and heart diseases, but its molecular basis remains poorly understood. Multiple studies have demonstrated the association of urinary biomarkers with both heart and kidney diseases. However, their relevance and involvement in CRS have not been investigated yet. To address this gap, a study was designed with the aim to compare urinary biomarkers specific for heart failure (HF) and chronic kidney disease (CKD) with peptides representing CRS, with the ultimate target to connect these findings towards a better understanding of CRS pathophysiology. Method A total of 3.463 urinary peptidomic datasets from patients with HF, CKD, or with both HF and CKD (CRS) as well as patients with no apparent diseases (controls) were retrieved and analyzed from the urinary peptidomics database (Latosinska A et al., Electrophoresis 2019; 40: 2294-2308). Following the matching for age, gender, heart and kidney function, differences in the abundance of urinary peptides were investigated in a cohort comprised of 390 patients with HF, 257 patients with CKD, 392 patients with CRS and 356 controls. The non-parametric Mann-Whitney U test was applied, followed by correction for multiple testing using the Benjamini-Hochberg method. To map the peptides to the protein precursor, the alignment tool Geneious (www. geneious.com) was applied, while the PeptideRanker (http://distilldeep.ucd.ie/PeptideRanker/) was used to predict probability of peptide being bioactive. Results The multiple pair-wise comparisons resulted in the identification of numerous differentially abundant peptides (p<0.05) between the studied conditions, including among others 176 HF-specific, 146 CKD-specific and 35 CRS-specific peptides. Among the HF-specific peptides, the majority (n=94, 53.4%) originated from collagen type I, II and III. In the case of CKD-specific peptides, 24 (16.43%) originated from alpha-1-antitrypsin, 19 (13.0%) from b2-microglobulin and 15 (10.27%) from collagen type I. For the CRS specific peptides, fragments of Ig lambda-2 chain C regions (n=4, 11.42%), collagen type III (n=4, 11.42%), secreted and transmembrane protein 1 (n=3, 8.57%) and gelsolin (n=1, 2.85%) were identified (figure: 1). Of the 176 HF-specific peptides, 94 (53.40%) were predicted as bioactive, including, among others, fragments of collagen types I (n=43, 45.74%) and III (n=21, 22.34%). In the former, peptides with the higher bioactivity scores were aligned close to the N terminus of the precursor protein, whereas in the latter, peptides were in close proximity to both N and C termini. Along the same lines, 32 (21.91%) of the 146 CKD-specific peptides were predicted as bioactive, including peptides from collagen types I and III with the highest score, as well as fragments from collagen type V and the C terminus of the b2-microglobulin and alpha-1-antitrypsin proteins. No CRS-specific peptides could be predicted as bioactive. Conclusion Specific urinary peptides significantly associated with CRS, but not with HF or CKD, could be identified. These data indicate that on a molecular level, CRS is not merely the result of a combination of HF and CKD, but may represent a distinct pathology, defined via specific proteomic changes. It is expected that interpretation of these findings in the context of existing literature as well as in vitro activity assays will help to understand their biological relevance in CRS.


2000 ◽  
Vol 109 (2) ◽  
pp. 180-186 ◽  
Author(s):  
Teruhiko Harada ◽  
Youngki Kim ◽  
Steven K. Juhn ◽  
Yasuo Sakakura

We have employed immunohistochemistry to obtain baseline information on the molecular constituents of the extracellular matrix (ECM) of the endolymphatic duct (ED) and endolymphatic sac (ES) of the chinchilla. The results demonstrated that collagen types I and III were distributed in the subepithelial layer in the ED and ES, type IV collagen and laminin in the basement membranes, and fibronectin in the subepithelial layer and partly in the conglomerated cells in the ES. Collagen type III was diffusely distributed in the whole subepithelial layer of the ES, whereas collagen type I was concentrated densely in the deep layer of the interstitium, although gradually, the cuboidal epithelium in the ES was transformed into a flatter type in the ED. The epithelial cells of the ED and ES were clearly positive for keratin. This study deals, in particular, with the normal distribution of ECM components of the ED and ES of the chinchilla.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Xuan Wang ◽  
Xia Li ◽  
Li-na Wang ◽  
Jing-juan Pan ◽  
Xue Yang ◽  
...  

Little is known about the effects of Buyang Huanwu decoction on pulmonary fibrosis. Herein, 144 healthy SD rats were randomly divided into six groups: blank control group (B), model control group (M), positive medicine control group (Mp), and high-, moderate-, and low-dose Buyang Huanwu decoction groups (Hd, Md, and Ld). A pulmonary fibrosis model was established by endotracheal injection of bleomycin. On the second day of modeling, the corresponding saline, methylprednisolone suspension, and the three doses of Buyang Huanwu decoction were used to treat the 6 groups of rats by intragastric administration for 7, 14, and 28 consecutive days. After 7, 14, and 28 days of treatment, the mRNA expression of CTGF and AKT, the protein level of CTGF, p-AKT, and collagen types I and III were tested. Finally, we found that the serum collagen type I and III level in Hd, Md, and Ld rats on the 14th and 28th day and the collagen type I and III level in Hd rats on 7th day were significantly lower than in M rats (P<0.01). The protein level of p-AKT and CTGF in Hd and Md rats on the 7th and 14th days and the protein level of p-AKT in Hd rats on the 28th day were lower than in M rats (P<0.01, P<0.05). The level of CTGF mRNA in Hd, Md, and Ld rats and the level of AKT mRNA in Hd and Md rats on the 7th, 14th, and 28th days and the expression level of AKT mRNA in Ld rats on the 14th and 28th days were significantly lower than in M rats (P<0.01). The study suggests that Buyang Huanwu decoction alleviated pulmonary fibrosis of rats by improvement of lung tissue morphology, low level of serum collagen types I and III, and the reduced expression of CTGF and p-AKT protein, which might be a result of its downregulated expression of CTGF and AKT mRNA levels.


2000 ◽  
Vol 68 (9) ◽  
pp. 5218-5224 ◽  
Author(s):  
Sreedhar R. Nallapareddy ◽  
Xiang Qin ◽  
George M. Weinstock ◽  
Magnus Höök ◽  
Barbara E. Murray

ABSTRACT Adhesin-mediated binding to extracellular matrix (ECM) proteins is thought to be a crucial step in the pathogenic process of many bacterial infections. We have previously reported conditional adherence of most Enterococcus faecalis isolates, after growth at 46°C, to ECM proteins collagen types I and IV and laminin; identified an E. faecalis-specific gene, ace, whose encoded protein has characteristics of a bacterial adhesin; and implicated Ace in binding to collagen type I. In this study, we constructed an ace disruption mutant from E. faecalis strain OG1RF that showed marked reduction in adherence to collagen types I and IV and laminin when compared to the parental OG1RF strain after growth at 46°C. Polyclonal immune serum raised against the OG1RF-derived recombinant Ace A domain reacted with a single ∼105-kDa band of mutanolysin extracts from OG1RF grown at 46°C, while no band was detected in extracts from OG1RF grown at 37°C, nor from the OG1RF ace mutant grown at 37 or 46°C. IgGs purified from the anti-Ace A immune serum inhibited adherence of 46°C-grown E. faecalis OG1RF to immobilized collagen type IV and laminin as well as collagen type I, at a concentration as low as 1 μg/ml, and also inhibited the 46°C-evoked adherence of two clinical isolates tested. We also showed in vitro interaction of collagen type IV with Ace from OG1RF mutanolysin extracts on a far-Western blot. Binding of recombinant Ace A to immobilized collagen types I and IV and laminin was demonstrated in an enzyme-linked immunosorbent assay and was shown to be concentration dependent. These results indicate that Ace A mediates the conditional binding of E. faecalis OG1RF to collagen type IV and laminin in addition to collagen type I.


1989 ◽  
Vol 35 (2) ◽  
pp. 246-250 ◽  
Author(s):  
M L De Buyzere ◽  
I K De Scheerder ◽  
J R Delanghe ◽  
J H Robbrecht ◽  
D L Clement ◽  
...  

Abstract In these enzyme-linked immunosorbent assays for determination of autoantibodies (IgG, IgM) against collagen type I (ACA I), III (ACA III), and IV (ACA IV), we use commercially available antigen preparations. Inhibition curves showed limited cross-reactivity between these different collagen preparations, the major interference being observed after addition of collagen type III in the ACA I procedures. Imprecision (CVs) for high- and low-titer samples ranged between 1.5% and 7.9% (within-run) and 5.5% and 12.7% (between-run) for ACA I, between 2.2-8.7% and 4.5-10.7% for ACA III, and between 1.3-5.9% and 7.4-11.6% for ACA IV. Significantly increased humoral immune response against collagen types I and III (P less than 0.001) could be demonstrated during the first month of infective endocarditis. In contrast, only borderline increases, however constant, of autoimmune response against basement-membrane collagen (ACA IV) were noticed during 90 days of follow-up.


2000 ◽  
Vol 84 (10) ◽  
pp. 621-625 ◽  
Author(s):  
R. M. van der Plas ◽  
G. Vandecasteele ◽  
S. Vauterin ◽  
E. G. Huizinga ◽  
J. J. Sixma ◽  
...  

SummaryWe previously found that two peptides (N- and Q-peptide) selected by phage display for binding to an anti-vWF antibody, were able to inhibit vWF-binding to collagen (1). The sequence of those peptides could be aligned with the sequence in vWF at position 1129-1136 just outside the A3-domain. As the peptides represent an epitope or mimotope of vWF for binding to collagen we next wanted to study whether the alignment resulted in the identification of a new collagen binding site in vWF. We mutated the 1129-1136 VWTLPDQC sequence in vWF to VATAPAAC. Expressing this mutant vWF (7.8-vWF) in a fur-BHK cell line resulted in well processed 7.8-vWF containing a normal distribution of molecular weight multimers. However, binding studies of this mutant vWF to rat tail, human and calf skin collagens type I, to human collagen types III and VI, revealed no decrease in vWF-binding to any of these collagens. Thus, although the N-and Q-peptides did inhibit the vWF-collagen interaction, the resulting alignment with the vWF sequence did not identify a collagen binding site, pointing out that alignments (although with a high percentage of identity) do not always result in identification of binding epitopes. However, suprisingly removal of the A3-domain or changing the vWF sequence at position 1129-1136 resulted in an increase of vWF-binding to human collagen type VI and to rat tail collagen type I, implying that these changes result in a different conformation of vWF with an increased binding to these collagens as a consequence.


2007 ◽  
Vol 44 (3) ◽  
pp. 230-234 ◽  
Author(s):  
Alberto Luiz Monteiro Meyer ◽  
Eduardo Berger ◽  
Orlando Monteiro Jr. ◽  
Paulino Alberto Alonso ◽  
João Norberto Stavale ◽  
...  

BACKGROUND: Inguinal hernia is the second most common surgical case in our field. The anatomical factors alone are not enough to explain the inguinal hernia. Studies show changes in the proportion and quantity of collagen fibers in the developing of inguinal hernia. The greater production of collagen type III compared to the type I could justify the thinning of the fascia transversalis and its weakness. AIM: To determine the quantitative and qualitative changes of collagen in the fascia transversalis in inguinal hernia patients and compare them to findings from corpses without inguinal hernia. METHOD: Prospective case-control study based on the biopsy of fascia transversalis of 27 patients and 24 corpses. The technique used was hematoxylin-eosin and picrosirius colorimetry. RESULTS: The medium percent area of collagen (types I + III) and collagen type I, in both groups, show no statistic difference. The quantity of collagen type III was greater in the patients. Patients classified with Nyhus IIIa presented greater quantity of collagen type III. CONCLUSION: There is no significant difference in the quantity of collagen in the fascia transversalis of patients compared to the controls. An increase in the quantity of collagen type III was found in patients with inguinal hernia and a greater quantity in those patients classified with Nyhus IIIa.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yihui Song ◽  
Morgan Overmass ◽  
Jiawen Fan ◽  
Chris Hodge ◽  
Gerard Sutton ◽  
...  

Collagens represent a major group of structural proteins expressed in different tissues and display distinct and variable properties. Whilst collagens are non-transparent in the skin, they confer transparency in the cornea and crystalline lens of the eye. There are 28 types of collagen that all share a common triple helix structure yet differ in the composition of their α-chains leading to their different properties. The different organization of collagen fibers also contributes to the variable tissue morphology. The important ability of collagen to form different tissues has led to the exploration and application of collagen as a biomaterial. Collagen type I (Col-I) and collagen type IV (Col-IV) are the two primary collagens found in corneal and lens tissues. Both collagens provide structure and transparency, essential for a clear vision. This review explores the application of these two collagen types as novel biomaterials in bioengineering unique tissue that could be used to treat a variety of ocular diseases leading to blindness.


1988 ◽  
Vol 106 (3) ◽  
pp. 999-1008 ◽  
Author(s):  
D E Birk ◽  
J M Fitch ◽  
J P Babiarz ◽  
T F Linsenmayer

The distribution, supramolecular form, and arrangement of collagen types I and V in the chicken embryo corneal stroma were studied using electron microscopy, collagen type-specific monoclonal antibodies, and a preembedding immunogold method. Double-label immunoelectron microscopy with colloidal gold-tagged monoclonal antibodies was used to simultaneously localize collagen type I and type V within the chick corneal stroma. The results definitively demonstrate, for the first time, that both collagens are codistributed within the same fibril. Type I collagen was localized to striated fibrils throughout the corneal stroma homogeneously. Type V collagen could be localized only after pretreatment of the tissue to partially disrupt collagen fibril structure. After such pretreatments the type V collagen was found in regions where fibrils were partially dissociated and not in regions where fibril structure was intact. When pretreated tissues were double labeled with antibodies against types I and V collagen coupled to different size gold particles, the two collagens colocalized in areas where fibril structure was partially disrupted. Antibodies against type IV collagen were used as a control and were nonreactive with fibrils. These results indicate that collagen types I and V are assembled together within single fibrils in the corneal stroma such that the interaction of these collagen types within heterotypic fibrils masks the epitopes on the type V collagen molecule. One consequence of the formation of such heterotypic fibrils may be the regulation of corneal fibril diameter, a condition essential for corneal transparency.


1994 ◽  
Vol 6 (6) ◽  
pp. 669 ◽  
Author(s):  
PR Hurst ◽  
RD Gibbs ◽  
DE Clark ◽  
DB Myers

Uterine tissues of pregnant rats were extracted to define any changes to the proportions of collagens types I, III and V. The total concentration of extracted collagen was determined in tissue samples from implant and adjacent non-implant (NI) sites. Extracts were also subjected to polyacrylamide gel electrophoresis (PAGE), immunoblotting and gel densitometry to define the collagen types and to determine their relative proportions. By relating the proportions to the collagen concentrations in the extracts, type I was found to be the predominant collagen in both tissue regions although the concentration in the implant sites was lower than that in the NI sites. The concentration of Type I collagen decreased significantly over the period of observation in both implant and NI sites. Although the concentrations of collagen type III and type V also decreased in the implant sites, they did not alter in the NI sites. The results demonstrate that shortly after the initiation of implantation the uterus responds to the presence of the implanting embryo by decreasing the concentration of all three types of collagen. This indicates that their metabolism may, in part, be regulated by similar mechanisms. Furthermore, it was evident that a decrease in the concentration of collagen type I was initiated in uterine areas that, at the time of sampling, were not directly involved with implantation. During the study, it was found that the alpha 1 chain of collagen type V separated into two distinct bands when run on gels containing 3.8 M urea.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document