scholarly journals Application of active-phase plot to the kinetic analysis of lipoxygenase in reverse micelles

1992 ◽  
Vol 288 (3) ◽  
pp. 1011-1015 ◽  
Author(s):  
M Perez-Gilabert ◽  
A Sanchez-Ferrer ◽  
F Garcia-Carmona

A new plot for explaining the complex expression of the enzymic activity in reverse micelles has been developed as an extension of the theoretical model described by our group [Bru, Sánchez-Ferrer & García-Carmona (1990) Biochem. J. 268, 679-684]. The plot describes the changes in the relative volume, amount of enzyme (mumoles), enzyme concentration (microM) and substrate concentration (microM) in the phase where the enzyme is active. To illustrate the usefulness of this plot, the complex activity of soya bean lipoxygenase in reverse micelles acting on its interfacial substrate, octadecadienoic acid, was studied. It showed the key parameters ruling the activity profiles of lipoxygenase with respect to micelle size (omega 0), micelle concentration (theta) and the substrate/surfactant molar ratio (rho), which have never been described before.

1990 ◽  
Vol 268 (3) ◽  
pp. 679-684 ◽  
Author(s):  
R Bru ◽  
A Sánchez-Ferrer ◽  
F García-Carmona

A theoretical model for the expression of enzymic activity in reverse micelles previously developed [Bru. Sánchez-Ferrer & García-Carmona (1989) Biochem. J. 259, 355-361] was extended in the present work. The substrate concentration in each reverse-micelle phase (free water, bound water and surfactant apolar tails) and the organic solvent was expressed as a function of the total substrate concentration, taking into account its partition coefficients, that is, partitioning of the substrate in a multiphasic system. In each phase the enzyme expresses a catalytic constant and a Km. Thus the whole reaction rate is the addition of the particular rates expressed in each domain. This model was compared with that developed for a biphasic system [Levashov, Klyachko, Pantin, Khmelnitski & Martinek (1980) Bioorg. Khim. 6, 929-943] by fitting the experimental results obtained with mushroom tyrosinase (working on both 4-t-butylcatechol and 4-methylcatechol) to the two models. The parameters which characterize reverse micelles, omega 0 (water/surfactant molar ratio) and theta (fraction of water) were investigated. The omega 0 profile was shown to be hyperbolic for both substrates. Activity towards 4-t-butylcatechol decreases as theta increases, this observation being attributable to a dilution of the substrate. A Km of 7.8 M for 4-t-butylcatechol could be calculated on the basis of the biphasic model, whereas it was 13.5 mM when calculating on the basis of our model. A new parameter, rho (= [substrate]/theta), was defined to characterize those substrates that mainly solubilize in the reverse micelle (‘micellar substrates’).


2005 ◽  
Vol 2005 (1) ◽  
pp. 18-20 ◽  
Author(s):  
Frederik Fusek ◽  
Ol'ga Grančičová ◽  
Dieter Lath

The aquation of α-cis-[CoCl2(edda)]- and of β-cis-[CoCl2(trien)]+ has been studied in reverse micelles of water/AOT/n-heptane and water/CTAB/n-heptane+CHCl3 for various concentrations of water and AOT at 298.1 K. The reaction rate depends on the molar ratio W as well as on the concentration of AOT. These results demonstrate the important effect of micelle size as well as of structure and state of confined water in the aquation rate.


Author(s):  
Kohki MUKAI ◽  
Kosuke Ikeda ◽  
Reo Hatta

Abstract Increasing the thickness of the quantum dot silica coating layer reduces monodispersity and shape symmetry. This paper reports three effective ways to solve this problem and achieve a large silica-coated QDs, i.e., proper silanization on the QD surface, control of reverse micelle size by adjusting the amount of QD solvent, and two-step formation of silica shell. Proper substitution of ligands on the QD surface in the early stages of silica shell formation was important for uniform coating reaction. An amount of toluene as QD solvent determined the size of reverse micelles during the silica shell formation. There was an optimum combination of inverse micelle size and silica shell size to obtain silica-coated QDs with good monodispersity and high shape symmetry. We succeeded in growing the thick silica shell with expanding reverse micelle size by additionally supplying toluene with the raw material using the optimum silica-coated QDs as growth nucleus


1993 ◽  
Vol 290 (2) ◽  
pp. 583-590 ◽  
Author(s):  
P V Attwood ◽  
W Johannssen ◽  
A Chapman-Smith ◽  
J C Wallace

The time-dependent loss of enzymic activity and tetrameric structure of chicken liver pyruvate carboxylase (EC 6.4.1.1) after dilution below 2 units/ml was apparently monophasic and first-order. When examined over a range of initial enzyme concentrations, both activity and tetrameric structure decayed to equilibrium levels which were dependent on the initial concentration. The observed rate constants for the loss of enzymic activity (i) showed no apparent dependence on the initial enzyme concentration, and (ii) were of similar magnitude to the corresponding rate constants of dissociation. Computer simulations of the most likely kinetic model suggest that the predominant form of the dissociated enzyme is the monomer. Dilution of pyruvate carboxylase in the presence of the allosteric activator acetyl-CoA largely prevented the subsequent dissociation of the tetrameric molecule. In addition, acetyl-CoA was able to cause a degree of activation and reassociation when added after dilution inactivation had been allowed to occur. Electron-microscopic observation showed the treatment with avidin before dilution markedly decreased the degree of dissociation of the enzyme tetramer. This structure-stabilizing effect of avidin was dependent on preincubation of the concentrated enzyme solution with acetyl-CoA. We propose that, over a range of protein concentrations, the tetrameric enzyme exists in two forms that are in equilibrium, and that acetyl-CoA alters the equilibrium to favour the more compact form.


1977 ◽  
Vol 23 (12) ◽  
pp. 2231-2237 ◽  
Author(s):  
B F Howell ◽  
S McCune ◽  
R Schaffer

Abstract We previously observed [Clin. Chem. 22, 1648 (1976)] that values of the Michaelis constant for NADH for the conversion of pyruvate to lactate with lactate dehydrogenase (EC 1.1.1.27) in the presence of 0.1 mol/liter buffers at 25 degrees C showed first-order dependence on enzyme concentration. This is now recognized to be the result of an inhibitory influence exerted by buffers [NH4HCO2, tris(hydroxymethyl)aminomethane, and phosphate] and salts [(NH4)2SO4 and NaCl] present in the reaction mixtures. Inhibition constants for the enzyme/inhibitor complexes formed with these substances are about 0.3 mol/liter for competition of NH4HCO3 with NaOH and 0.4 mol/liter for competition of NH4HCO3 with pyruvate; they are 0.6 mol/liter for NaCl, 1.0 mol/liter for sodium phosphate, 0.3 mol/liter for (NH4)2SO4, and 0.8 mol/liter for tris(hydroxymethyl)aminomethane when these substances compete with NADH. Because of the large molar ratio of buffer to substrate (about 10(9):1) in enzymatic assays, the buffer concentration significantly influences the Michaelis constant, despite the large value for the inhibition constant. Attention to the concentrations of these substances may be required for decreasing variability in clinical assays in which lactate dehydrogenase and possible other enzymes are used.


2013 ◽  
Vol 645 ◽  
pp. 19-23 ◽  
Author(s):  
Hui Zhong ◽  
Zheng Fang ◽  
Bao Hua Zou ◽  
Xin Li ◽  
Kai Guo

The esterification of oleic acid with alkyl alcohols in solv ent-free systems was catalyzed by an immobilized lipase from Candida sp . 99-125. The influence of several factors, including enzyme concentration, temperature, molar ratio between oleic acid and alkyl alcohols, and structure of alcohol was also investigated. The results indicated that the reactions catalyzed by lipase at 20 o C, in the presence of 3% (w/w) lipase, on the molar ratio of 1:1 between oleic acid and alcohols, afforded products in high yield. It showed high selectivity to primary and low selectivity to secondary alcohols and tertiary alcohols because of the sterically hindered effect. Methanol has certain toxicity on the activity of the lipase. The lipase from Candida sp. 99-125 was identified to be an effective catalyst in the esterification of alcohol and oleic acid at low temperature.


2009 ◽  
Vol 152-153 ◽  
pp. 205-208 ◽  
Author(s):  
H. Arabi ◽  
S. Nateghi ◽  
S. Sadeghi

Iron oxide nanoparticles were synthesis by reverse micelle method. X-ray diffraction technique and vibration sample magnetometer were applied to characterize the produced samples at different conditions and parameters for synthesis route. There is no significant difference between samples prepared at 5°C and room temperature except a better crystalline at room temperature. The molar ratio of water to surfactant (w parameter) and concentration of the salt solution on size and magnetic properties of nanoparticles have been investigated. Increasing w leads to producing particles with larger size i.e. for w=16.83, 11.22, and 5.6, particles size are 15.22, 11.66 and 10.5 nm, respectively. The size of nanoparticles are in the range of 9 to 20 nanometers


Biocatalysis ◽  
1990 ◽  
Vol 4 (2-3) ◽  
pp. 153-161 ◽  
Author(s):  
Daeseok Han ◽  
Peter Walde ◽  
Pier Luigi Luisi

2014 ◽  
Vol 881-883 ◽  
pp. 245-250
Author(s):  
Jing Sen Yan ◽  
Hai Yan Wang ◽  
Feng Wei He

A series of TiO2-Al2O3 composite supports were prepared by co-precipitation of titanium sulfate and aluminium nitrate , and the nickel phosphide catalysts were prepared by incipient wetness impregnation and in situ H2 reduction method. The catalysts were characterized by XRD, N2 adsorption, TPR, TEM and XPS techniques. Their hydrodenitrogenation (HDN) performances were evaluated by using quinoline as model molecules . The results show that TiO2 was evenly dispersed on massive γ-Al2O3 surface. The introduction of TiO2 weakened the strong interaction between Al2O3 and phosphate, and improved the reducibility of the precursors , facilitating to the formation of Ni2P active phase. TiO2 acted as an electronic promoter for the Ni-P catalyst and enhanced both the hydrogenation and C-N bond cleavage activities. Different Ti / Al molar ratio had great influence on HDN activity of the catalyst. The Ni2P /TiO2-Al2O3 with Ti/Al ratio of 1/8, exhibited the highest activity for quinoline HDN.


2005 ◽  
Vol 12 (02) ◽  
pp. 239-277 ◽  
Author(s):  
VUK USKOKOVIĆ ◽  
MIHA DROFENIK

Reverse micelles as nanosized aqueous droplets existing at certain compositions of water-in-oil microemulsions are widely used today in the synthesis of many types of nanoparticles. However, without a rich conceptual network that would correlate the properties and compositions of reverse micellar microemulsions to the properties of to-be-obtained particles, the design procedures in these cases usually rely on a trial-and-error approach. As like every other science, what is presently known is merely the tip of the iceberg compared to the uninvestigated vastness still lying below. The aim of this article is to present readers with most of the major achievements from the field of materials synthesis within reverse micelles since the first such synthesis was performed in 1982 until today, to possibly open up new perspectives of viewing the typical problems that nowadays dominate the field, and to hopefully initiate the observation and generation of their actual solutions. We intend to show that by refining the oversimplified representations of the roles that reverse micelles play in the processes of nanoparticles synthesis, steps toward a more complex and realistic view of the concerned relationships can be made. The first two sections of the review are of introductory character, presenting the reader with the basic concepts and ideas that serve as the foundations of the field of reverse micellar synthesis of materials. Applications of reverse micelles, other than as media for materials synthesis, as well as their basic structures and origins, together with experimental methods for evaluating their structural and dynamic properties, basic chemicals used for their preparation and simplified explanations of the preparation of materials within, will be reviewed in these two introductory sections. In Secs. 3 and 4, we shall proceed with reviewing the structural and dynamic properties of reverse micelles, respectively, assuming that knowledge of both static and dynamic parameters of microemulsions and changes induced thereof, are a necessary step prior to putting forth any correlations between the parameters that define the properties of microemulsions and the parameters that define the properties of materials synthesized within. Typical pathways of synthesis will be presented in Sec. 5, whereas basic parameters used to describe correlations between the properties of microemulsion reaction media and materials prepared within, including reagent concentrations, ionic strength, temperature, aging time and some of the normally overlooked influences, will be mentioned in Sec. 6. The whole of Sec. 7 is devoted to reviewing water-to-surfactant molar ratio as the most often used parameter in materials design by performing reverse micellar synthesis routes. The mechanisms of particle formation within precipitation synthesis in reverse micelles is discussed in Sec. 8. Synthesis of composites, with special emphasis on silica composites, is described in Sec. 9. All types of materials, classified according to their chemical compositions, that were, to our knowledge, synthesized by using reverse micelles up-to-date, will be briefly mentioned and pointed to the corresponding references in Sec. 10. In Sec. 11, some of the possible future directions for the synthesis of nanostructured materials within reverse micelles, found in combining reverse micellar syntheses and various other synthesis procedures with the aim of reaching self-organizing nanoparticle systems, will be outlined.


Sign in / Sign up

Export Citation Format

Share Document