scholarly journals Regulation by glucocorticoids of angiotensinogen gene expression and secretion in adipose cells

1997 ◽  
Vol 328 (2) ◽  
pp. 701-706 ◽  
Author(s):  
Jérôme AUBERT ◽  
Christian DARIMONT ◽  
Irina SAFONOVA ◽  
Gérard AILHAUD ◽  
Raymond NEGREL

Adipose cells are an important source of angiotensinogen (AT). Its activation product, angiotensin II, stimulates in vitro and in vivo the production and release of prostacyclin which acts as a potent adipogenic signal in promoting the terminal differentiation of preadipocytes to adipocytes. Since glucocorticoids are known to promote adipose cell differentiation in vitro as well as in vivo, their role in the regulation of AT gene expression and secretion has been investigated in cultured Ob1771 mouse adipose cells. In contrast with liver cells, which are the major source of AT and the target of several hormones for the regulation of its expression, adipose cells are only responsive to glucocorticoids, which are able to up-regulate AT gene expression and AT secretion rapidly and dose-dependently. On exposure to glucocorticoids, accumulation of AT mRNA appears primarily to be due to transcriptional activation of the gene and is parallelled by secretion of the protein. Similar results on AT mRNA expression and AT secretion were obtained using explants of rat adipose tissue ex vivo demonstrating a major if not exclusive mechanism of regulation of AT production by glucocorticoids in mature adipose cells. Together these results provide a potential link between glucocorticoids, AT, the growth of adipose tissue and increased blood pressure.

2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


Endocrinology ◽  
2003 ◽  
Vol 144 (12) ◽  
pp. 5578-5584 ◽  
Author(s):  
Philippe Linscheid ◽  
Dalma Seboek ◽  
Eric S. Nylen ◽  
Igor Langer ◽  
Mirjam Schlatter ◽  
...  

1964 ◽  
Vol 207 (6) ◽  
pp. 1215-1220 ◽  
Author(s):  
Alisa Gutman ◽  
Eleazar Shafrir

Rat adipose tissue from different body sites was shown to contain uridine diphosphoglucose (UDPG)-transglucosylase activity, which on the basis of protein content was comparable to or higher than that reported for muscle or liver. In epididymal adipose tissue, the activity of UDPG-glycogen transglucosylase and phosphorylase, as well as the content of glycogen per wet weight, decreased with increasing age of the animals in parallel with the decrease of tissue protein content. On prolonged fast the activity of UDPG-glycogen transglucosylase and phosphorylase per milligram protein dropped by 25–50% of the control value. On refeeding, the extent of changes was variable but, in general, at 24 hr control or higher levels of activity were reached and at 48 hr the activities were elevated. The ratio of glucose 6-phosphate independent activity of UDPG-glycogen transglucosylase to total activity was not affected by fasting and refeeding or by the administration of glucose with insulin. In adrenalectomized rats, with high adipose tissue glycogen, no change in UDPG-glycogen transglucosylase was found, whereas the levels of phosphorylase were elevated. Epinephrine in vivo and in vitro did not affect the activity of UDPG-glycogen transglucosylase of adipose tissue.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Francesca-Maria Raffaelli ◽  
Julia Resch ◽  
Rebecca Oelkrug ◽  
K. Alexander Iwen ◽  
Jens Mittag

AbstractBrown adipose tissue (BAT) thermogenesis is considered a potential target for treatment of obesity and diabetes. In vitro data suggest dopamine receptor signaling as a promising approach; however, the biological relevance of dopamine receptors in the direct activation of BAT thermogenesis in vivo remains unclear. We investigated BAT thermogenesis in vivo in mice using peripheral administration of D1-agonist SKF38393 or D2-agonist Sumanirole, infrared thermography, and in-depth molecular analyses of potential target tissues; and ex vivo in BAT explants to identify direct effects on key thermogenic markers. Acute in vivo treatment with the D1- or D2-agonist caused a short spike or brief decrease in BAT temperature, respectively. However, repeated daily administration did not induce lasting effects on BAT thermogenesis. Likewise, neither agonist directly affected Ucp1 or Dio2 mRNA expression in BAT explants. Taken together, the investigated agonists do not seem to exert lasting and physiologically relevant effects on BAT thermogenesis after peripheral administration, demonstrating that D1- and D2-receptors in iBAT are unlikely to constitute targets for obesity treatment via BAT activation.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 449-449
Author(s):  
Patricia Perez ◽  
Desiree Wanders ◽  
Hannah Land ◽  
Kathryn Chiang ◽  
Rami Najjar ◽  
...  

Abstract Objectives Studies suggest that inflammation mediates the link between obesity and its comorbidities including type 2 diabetes and cardiovascular disease. Hence, there is a demand for effective alternative or complementary approaches to treat obesity-associated inflammation. The objective of this study was to determine whether consumption of blackberries (BL) and raspberries (RB) alone or in combination reduce obesity-induced inflammation. Methods In Vitro Study: RAW 264.7 macrophages were pretreated with either BL, RB, or BL + RB, each at a final concentration of 200 µg/mL for 2 h. LPS (1 ng/mL) was then added to the media for 16 h. mRNA expression of inflammatory cytokines was measured. In Vivo Study: Five-week-old mice were acclimated to a low-fat low-sucrose (LFLS) diet for one week after which mice were randomized 10 per group to one of five groups: 1) LFLS, 2) high-fat high-sucrose (HFHS), 3) HFHS + 10% BL, 4) HFHS + 10% RB, or 5) HFHS + 5% BL + 5% RB. Expression of inflammatory markers was measured in the liver as well as epididymal and inguinal white adipose tissue. Results In Vitro Study: Each berry alone and in combination suppressed the LPS-induced increase in inflammatory markers, with the combination (BL + RB) having the greatest effect. The combination suppressed LPS-induced expression of Ccl2, Tnfa, F4/80, and Il6 by 3.7−, 5.3−, 5.3−, and 4.4-fold, respectively. In Vivo Study: Gene expression analysis indicated that berry consumption had no significant effect on proinflammatory (Ccl2, Il1b, Tnfa, Il6, Itgam) or anti-inflammatory (Adipoq, Arg1, Mgl1) markers in adipose tissue depots or liver. However, relatively low gene expression of inflammatory markers in the tissues indicates that the mice fed the HFHS diet failed to develop a robust inflammatory state. Conclusions BL and RB have direct anti-inflammatory effects on immune cells. Initial analysis indicates that consumption of BL and RB has no significant effects on markers of inflammation in a diet-induced mouse model of obesity. However, it is possible that the relatively low levels of inflammation in these mice masked the anti-inflammatory potential of BL and RB. Ongoing analysis will provide additional insights into the effects of BL and RB on inflammation in these tissues. Funding Sources Lewis Foundation Award.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2360-2360
Author(s):  
Agata A Filip ◽  
Dorota Koczkodaj ◽  
Tomasz Kubiatowski ◽  
Ewa Wasik-Szczepanek ◽  
Anna Dmoszynska

Abstract Abstract 2360 Poster Board II-337 Introduction: Despite their longevity in vivo, CLL lymphocytes die rapidly when put to in vitro cultures, what proves that the resistance to apoptosis is not an intrinsic feature of leukemic cells, but depends on environmental signals. Recently it was shown that mononuclear cells from peripheral blood of CLL patients differentiate in vitro into large, adherent cells that grow in close contact with CLL lymphocytes. They were termed “nurselike cells” (NLCs), because they support leukemic lymphocyte survival in culture. The presence of the cells morphologically and phenotypically similar to NLCs was demonstrated in peripheral lymphatic organs of CLL patients. It may suggest their role in CLL lymphocytes protection in vivo and, as a consequence, point the new target in CLL treatment. Patients and Methods: The study included the group of 65 previously untreated CLL patients, 24 women and 41 men, aged from 36 to 86 yrs. 12 patients (18%) were diagnosed with stage 0 according to Rai, 15 patients (23%) with stage I, 30 patients (46%) with stage II, 5 patients (8%) with stage III and 3 patients (5%) with stage IV. Peripheral blood lymphocytes ex vivo were examined for CD14, CD38, BCL2 and ZAP70 expression by flow cytometry and for BCL2, SURVIVIN and ZAP70 gene expression by RT-PCR. TP53 gene status was assessed by FISH. Lymphocytes of 20 patients were assayed for apoptosis-related gene expression by means of cDNA macroarrays (Clontech). To generate NLCs, PB leukemic cells were cultured in vitro for 14 days on standard medium (RPMI 1640 with L-glutamine, 15% FCS, antibiotics/antimycotics; cell density 3 × 106/ml) and the outgrowth and number of NLCs was assessed in relation to clinical and hematological parameters. NLCs were identified morphologically and by CD31/VIMENTIN protein expression. Results: In 58 cases (89%) the outgrowth of NLCs was observed, while their number differed in cultures of the cells of different patients: in 49 cultures (84.5%) there were over 20 NLCs/mm2 (up to 52 NLCs/mm2), and in 9 cases (15.5%) less than 20 NLCs/mm2. Positive correlation was shown between NLC number and B2M serum level (p=0.044) and absolute monocyte count (p=0.019). Significantly higher NLC number was observed in case of patients with higher CD14+ cell number (p<0.0001) and higher SURVIVIN gene expression assessed by RT-PCR (p<0.0001) and macroarrays (p=0.013). We found no statistically significant relation of NLCs number and: the Rai stage of the disease, WBC, lymphocyte count, LDH serum level, BCL2, CD38 and ZAP70 expression and TP53 gene status. During the follow-up period of 6 years we observed the tendency for longer overall survival in patients that produce less than 20 NLCs/mm2 (fig. 1), but it was not statistically significant. Conclusions: The number of NLC cells obtained in vitro from PBL of CLL patients correlates with B2M serum level and SURVIVIN gene expression in CLL cells ex vivo. High B2M level is a marker of poor prognosis. SURVIVIN represents a family of IAP (Inhibitor of APoptosis) proteins. While rare in PBL of CLL patients, its expression is typical for proliferating leukemic cells pool in pseudofollicle microenvironment. SURVIVIN inhibits apoptosis by blocking caspase-3 and -7. Considering the protective role of NLC cells towards CLL lymphocytes in vitro, these results altogether with observed tendency to shorter survival of patients generating high NLCs number may prove the presence of supportive mechanisms exerted by NLCs in vivo. Disclosures: No relevant conflicts of interest to declare.


1976 ◽  
Vol 158 (1) ◽  
pp. 9-16 ◽  
Author(s):  
O Meyuhas ◽  
L Reshef ◽  
F J Ballard ◽  
R W Hanson

1. Epididymal adipose tissue from the rat was maintained in culture for periods of up to 96h. 2. After an initial decrease in protein synthesis during the first 24h of culture, the adipose tissue recovered its capacity to synthesize and accumulate proteins of a relatively large size. 3. The activity of phosphoenolpyruvate carboxykinase decreased in a parallel manner, but increased again after 24h of incubation of the tissue in culture, to a value twice that noted in the tissue in vivo. This increase in enzyme activity was due to an increase in its rate of synthesis. 4. Both insulin and dexamethasone (9alpha-fluoro-16alpha-methyl-11beta,17,-21-trihydroxypregna-1,4-diene-3,20-dione) inhibited phosphoenolpyruvate carboxykinase synthesis, but dexamethasone also decreased total protein synthesis. 5. The half-life of phosphoenolpyruvate carboxykinase in adipose tissue cultured in vitro was 5-7h and was not altered by insulin or dexamethasone. 6. It is concluded that both insulin and glucocroticoids lower the activity of phosphoenolpyruvate carboxykinase in rat adipose tissue by decreasing its rate of synthesis.


1998 ◽  
Vol 18 (9) ◽  
pp. 4971-4976 ◽  
Author(s):  
Ken-ichi Takemaru ◽  
Satoshi Harashima ◽  
Hitoshi Ueda ◽  
Susumu Hirose

ABSTRACT Transcriptional coactivators play a crucial role in gene expression by communicating between regulatory factors and the basal transcription machinery. The coactivator multiprotein bridging factor 1 (MBF1) was originally identified as a bridging molecule that connects theDrosophila nuclear receptor FTZ-F1 and TATA-binding protein (TBP). The MBF1 sequence is highly conserved across species fromSaccharomyces cerevisiae to human. Here we provide evidence acquired in vitro and in vivo that yeast MBF1 mediates GCN4-dependent transcriptional activation by bridging the DNA-binding region of GCN4 and TBP. These findings indicate that the coactivator MBF1 functions by recruiting TBP to promoters where DNA-binding regulators are bound.


2020 ◽  
Vol 27 (7) ◽  
pp. 441-456
Author(s):  
Juan A Ardura ◽  
Luis Álvarez-Carrión ◽  
Irene Gutiérrez-Rojas ◽  
Peter A Friedman ◽  
Arancha R Gortázar ◽  
...  

Bone metastases are common in advanced prostate cancer patients, but mechanisms by which specific pro-metastatic skeletal niches are formed before tumor cell homing are unclear. We aimed to analyze the effects of proteins secreted by primary prostate tumors on the bone microenvironment before the settlement and propagation of metastases. Here, using an in vivo pre-metastatic prostate cancer model based on the implantation of prostate adenocarcinoma TRAMP-C1 cells in immunocompetent C57BL/6 mice, we identify MINDIN as a prostate tumor secreted protein that induces bone microstructural and bone remodeling gene expression changes before tumor cell homing. Associated with these changes, increased tumor cell adhesion to the endosteum ex vivo and to osteoblasts in vitro was observed. Furthermore, MINDIN promoted osteoblast proliferation and mineralization and monocyte expression of osteoclast markers. β-catenin signaling pathway revealed to mediate MINDIN actions on osteoblast gene expression but failed to affect MINDIN-induced adhesion to prostate tumor cells or monocyte differentiation to osteoclasts. Our study evidences that MINDIN secretion by primary prostate tumors creates a favorable bone environment for tumor cell homing before metastatic spread.


Reproduction ◽  
2011 ◽  
Vol 142 (2) ◽  
pp. 309-318 ◽  
Author(s):  
Elizabeth M Parrish ◽  
Anaar Siletz ◽  
Min Xu ◽  
Teresa K Woodruff ◽  
Lonnie D Shea

Ovarian follicle maturation results from a complex interplay of endocrine, paracrine, and direct cell–cell interactions. This study compared the dynamic expression of key developmental genes during folliculogenesis in vivo and during in vitro culture in a 3D alginate hydrogel system. Candidate gene expression profiles were measured within mouse two-layered secondary follicles, multi-layered secondary follicles, and cumulus–oocyte complexes (COCs). The expression of 20 genes involved in endocrine communication, growth signaling, and oocyte development was investigated by real-time PCR. Gene product levels were compared between i) follicles of similar stage and ii) COCs derived either in vivo or by in vitro culture. For follicles cultured for 4 days, the expression pattern and the expression level of 12 genes were the same in vivo and in vitro. Some endocrine (cytochrome P450, family 19, subfamily A, polypeptide 1 (Cyp19a1) and inhibin βA subunit (Inhba)) and growth-related genes (bone morphogenetic protein 15 (Bmp15), kit ligand (Kitl), and transforming growth factor β receptor 2 (Tgfbr2)) were downregulated relative to in vivo follicles. For COCs obtained from cultured follicles, endocrine-related genes (inhibin α-subunit (Inha) and Inhba) had increased expression relative to in vivo counterparts, whereas growth-related genes (Bmp15, growth differentiation factor 9, and kit oncogene (Kit)) and zona pellucida genes were decreased. However, most of the oocyte-specific genes (e.g. factor in the germline α (Figla), jagged 1 (Jag1), and Nlrp5 (Mater)) were expressed in vitro at the same level and with the same pattern as in vivo-derived follicles. These studies establish the similarities and differences between in vivo and in vitro cultured follicles, guiding the creation of environments that maximize follicle development and oocyte quality.


Sign in / Sign up

Export Citation Format

Share Document